• A Development of Generalized Coupled Markov Chain Model for Stochastic Prediction on Two-Dimensional Space
  • Park Eun-Gyu;
  • Department of Geology, Kyungpook National University;
  • 수정 연쇄 말콥체인을 이용한 2차원 공간의 추계론적 예측기법의 개발
  • 박은규;
  • 경북대학교 지질학과;
Abstract
The conceptual model of under-sampled study area will include a great amount of uncertainty. In this study, we investigate the applicability of Markov chain model in a spatial domain as a tool for minimizing the uncertainty arose from the lack of data. A new formulation is developed to generalize the previous two-dimensional coupled Markov chain model, which has more versatility to fit any computational sequence. Furthermore, the computational algorithm is improved to utilize more conditioning information and reduce the artifacts, such as the artificial parcel inclination, caused by sequential computation. A generalized 20 coupled Markov chain (GCMC) is tested through applying a hypothetical soil map to evaluate the appropriateness as a substituting model for conventional geostatistical models. Comparing to sequential indicator model (SIS), the simulation results from GCMC shows lower entropy at the boundaries of indicators which is closer to real soil maps. For under-sampled indicators, however, GCMC under-estimates the presence of the indicators, which is a common aspect of all other geostatistical models. To improve this under-estimation, further study on data fusion (or assimilation) inclusion in the GCMC is required.

본 연구에서는 기존 연쇄 말콥체인(Coupled Markov Chain, CMC) 확률식의 연산 경직성을 개선하기 위하여 일반화 된 2차원 연쇄 말콥체인(Generalized Coupled Markov Chain, GCMC) 확률식이 개발되었다. 또한 개발된 확률식에 근거하여 평면상에서 무작위적으로 분포하는 참조정보를 효율적으로 활용하는 연산 알고리듬이 개발되었다. 개발된 모델은 대안적 지구통계 기법으로의 새로운 기능성을 제시한다. 본 연구를 통해 새롭게 개발된 GCMC 확률식은 기존 CMC 확률식에 비해 보다 유연한 참조 정보 활용 가능성을 가지며 특수한 경우로 기존 CMC 확률식이 유도되었다. 또한 순차적 연산의 인위적 오류 발생 기능성 및 실제 야외 데이터의 낮은 빈도를 고려하여 무작위로 추출된 위치에서 각 범위를 이용한 연산 알고리듬이 제안되었다. 개발된 모델은 가상의 2차원 토양도에 적용되었으며 기존 지구통계 기법인 SIS에 비하여 손색이 없는 새로운 지구통계 기법으로 토양 및 지질을 포함한 다양한 예측에 이용 될 수 있는 가능성을 보였다. 낮은 빈도로 샘플링 된 지시자에 대해서는 기존 지구통계 기법과 마찬가지로 저평가되는 현상을 보였으며 이를 보완하기 위하여 다양한 소스의 데이터 융합 등을 바탕으로 한 계속적인 연구가 요구된다.

Keywords: Generalized coupled Markov chain (GCMC);Soil map;Geostatistics;

Keywords: 말콥체인;지구통계;토양도;

This Article

  • 2005; 10(5): 52-60

    Published on Oct 1, 2005

Correspondence to

  • E-mail: