• Assessment for the Comparability between Korean Ministry of Environment Standard and ISO Standard for the Determination of Heavy Metals in Soil
  • Shin, Gun-Hwan;Lee, Goon-Teak;Lee, Won-Seok;Kim, Ji-In;Kim, Bo-Kyong;Park, Hyun-Jeong;
  • National Instrumentation Center for Environmental Management, Seoul National University;National Instrumentation Center for Environmental Management, Seoul National University;National Institute for Environmental Research;National Institute for Environmental Research;National Institute for Environmental Research;National Instrumentation Center for Environmental Management, Seoul National University;
  • 토양 중금속 함량 측정에 대한 토양오염공정시험기준과 국제표준간의 적합성 평가
  • 신건환;이군택;이원석;김지인;김보경;박현정;
  • 서울대학교 농생명과학공동기기원;서울대학교 농생명과학공동기기원;국립환경과학원;국립환경과학원;국립환경과학원;서울대학교 농생명과학공동기기원;
Abstract
According to the agreement on WTO/TBT, we are under the situation to adopt international standard (ISO standard) as a national standard if it exists. However, in case of environmental area, it is a domestic legal obligation to use Korean environmental standard method(KESM) for analyzing various contaminants. Therefore it is necessary to assess the comparability between KEM and ISO standard prior to apply ISO standard to soil conservation law in Korea. The main purpose of this study is to assess the comparability of both methods for analyzing heavy metals in soil. We looked over various aspects like pre-treatment, calibration curve range, detection wavelength, soil organic matter content and so on. Apparently, the procedure of both methods is almost same. However in details, both methods are different in stationary time before aqua-regia extraction using reflux system, calibration curve range for Cu, Pb, Ni and measuring wavelength for Pb. According to the results of comparison test, the results were significantly different when the different calibration range was used. In case that all the extracts independent of methods were reanalyzed with the same calibration range of each method, both methods showed statistically same results. Other conditions like different stationary time, measuring wavelength of AAS and soil organic matter content did not have any influence on the analytical result. Therefore, we suggest to extend the calibration curve range to 0~8 mg/L which is used in KS I ISO standard(Korean standard related with environment which is translation version of ISO standard without any technical change). In case of $Cr^{6+}$, the results showed no significant differences between two methods even though the pretreatment, instrumentation and other analysis conditions were different. In addition to UV/Visble spectrometry of KESM for soil contamination, we suggest to adopt ion chromatography of ISO 15192(US EPA method 7199) for analyzing $Cr^{6+}$ with the consideration of laboratory work efficiency.

Keywords: ISO standard;Korean environmental standard method;Heavy metals;Chromium-hexavalent;

This Article

Correspondence to

  • E-mail: