Variability in precipitation due to climate change causes difficulties in securing stable surface water resource, which requires understanding of relation between precipitation and stream discharge. This study simulated stream discharge in a small mountainous forested catchment using antecedent precipitation index (API) models which represent variability of saturation conditions of soil layers depending on rainfall events. During 13 months from May 2015 to May 2016, stream discharge and rainfall were measured at the outlet and in the central part of the watershed, respectively. Several API models with average recession coefficients were applied to predict stream discharge using measured rainfall, which resulted in the best reflection time for API model was 1 day in terms of predictability of stream discharge. This indicates that soil water in riparian zones has fast response to rainfall events and its storage is relatively small. The model can be improved by employing seasonal recession coefficients which can consider seasonal fluctuation of hydrological parameters. These results showed API models can be useful to evaluate variability of streamflow in ungauged small forested watersheds in that stream discharge can be simulated using only rainfall data.
Keywords: Headwater stream;Rainfall-runoff model;Soil moisture condition;Riparian zone;Vegetation;