• Effects of Bentonite Illitization on Cesium Sorption
  • Jeonghwan Hwang1·Sungwook Choung2·Weon Shik Han1*·Wonwoo Yoon1

  • 1Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea
    2Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute (KBSI),
    Cheongju 28119, Republic of Korea

  • 벤토나이트의 일라이트화에 의한 세슘 수착 특성 변화 연구
  • 황정환1·정성욱2·한원식1*·윤원우1

  • 1연세대학교 지구시스템과학과
    2한국기초과학지원연구원

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Baeyens, B. and Bradbury, M.H., 1997, A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements, J. Contam. Hydrol., 27, 199-222.
  •  
  • 2. Bayoumi, T., Reda, S., and Saleh, H., 2012, Assessment study for multi-barrier system used in radioactive borate waste isolation based on Monte Carlo simulations, Appl. Radiat. Isot., 70, 99-102.
  •  
  • 3. Benedicto, A., Missana, T., and Fernández, A.M., 2014, Interlayer collapse affects on cesium adsorption onto illite, Environ. Sci. Technol., 48, 4909-4915.
  •  
  • 4. Bennett, D. and Gens, R., 2008, Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion, J. Nucl. Mater., 379, 1-8.
  •  
  • 5. Birkholzer, J., Houseworth, J., and Tsang, C.-F., 2012, Geologic disposal of high-level radioactive waste: Status, key issues, and trends, Annu. Rev. Environ. Resour., 37(1), 79-106.
  •  
  • 6. Boult, K., Cowper, M., Heath, T., Sato, H., Shibutani, T., and Yui, M., 1998, Towards an understanding of the sorption of U (VI) and Se (IV) on sodium bentonite, J. Contam. Hydrol., 35(1-3), 141-150.
  •  
  • 7. Bradbury, M. and Baeyens, B., 1994, Sorption by Cation Exchange Incorporation of a Cation Exchange Model into Geochemical Computer Codes, NAGRA NTB 94-11
  •  
  • 8. Bradbury, M.H. and Baeyens, B., 1997, A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part II: modelling, J. Contam. Hydrol., 27(3-4), 223-248.
  •  
  • 9. Bradbury, M.H. and Baeyens, B., 2000, A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks, J. Contam. Hydrol., 42(2-4), 141-163.
  •  
  • 10. Bradbury, M.H., Baeyens, B., 2005, Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides, Geochim. Cosmochim. Acta., 69(4), 875-892.
  •  
  • 11. Bradbury, M.H. and Baeyens, B., 2006, Modelling sorption data for the actinides Am (III), Np (V) and Pa (V) on montmorillonite, Radiochim. Acta., 94(9-11), 619-625.
  •  
  • 12. Bradbury, M.H. and Baeyens, B., 2011, Physico-chemical characterisation data and sorption measurements of Cs, Ni, Eu, Th, U, Cl, I and Se on MX-80 bentonite, Paul Scherrer Institute (PSI).
  •  
  • 13. Bradbury, M.H. and Baeyens, B., 2011, Predictive sorption modelling of Ni (II), Co (II), Eu (IIII), Th (IV) and U (VI) on MX-80 bentonite and Opalinus Clay: A ¡°bottom-up¡± approach, Appl. Clay Sci., 52(1-2), 27-33.
  •  
  • 14. Cao, X., Zheng, L., Hou, D., and Hu, L., 2019, On the long-term migration of uranyl in bentonite barrier for high-level radioactive waste repositories: The effect of different host rocks, Chem. Geol., 525, 46-57.
  •  
  • 15. Chen, Z.-G., Tang, C.-S., Shen, Z., Liu, Y.-M., and Shi, B., 2017, The geotechnical properties of GMZ buffer/backfill material used in high-level radioactive nuclear waste geological repository: a review, Environ. Earth Sci., 76, 270.
  •  
  • 16. Cherif, M.A., Martin-Garin, A., Gérard, F., and Bildstein, O., 2017, A robust and parsimonious model for caesium sorption on clay minerals and natural clay materials, Appl. Geochem., 87, 22-37.
  •  
  • 17. Cheshire, M.C., Caporuscio, F.A., Rearick, M.S., Jové-Colón, C., and McCarney, M.K., 2014, Bentonite evolution at elevated pressures and temperatures: An experimental study for generic nuclear repository designs, Am. Miner., 99(8-9), 1662-1675.
  •  
  • 18. Cho, W.-J. and Kim, G.Y., 2016, Reconsideration of thermal criteria for Korean spent fuel repository, Ann. Nucl. Energy., 88, 73-82.
  •  
  • 19. Cuadros, J., 2006, Modeling of smectite illitization in burial diagenesis environments, Geochim. Cosmochim. Acta., 70(16), 4181-4195.
  •  
  • 20. Cuadros, J. and Linares, J., 1996, Experimental kinetic study of the smectite-to-illite transformation, Geochim. Cosmochim. Acta., 60(3), 439-453.
  •  
  • 21. Durrant, C.B., Begg, J.D., Kersting, A.B., and Zavarin, M., 2018, Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite, Sci. Total Environ., 610-611, 511-520.
  •  
  • 22. Fan, Q., Tanaka, M., Tanaka, K., Sakaguchi, A., and Takahashi, Y., 2014a, An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility, Geochim. Cosmochim. Acta., 135, 49-65.
  •  
  • 23. Fan, Q., Yamaguchi, N., Tanaka, M., Tsukada, H., and Takahashi, Y., 2014b, Relationship between the adsorption species of cesium and radiocesium interception potential in soils and minerals: an EXAFS study, J. Environ. Radioact., 138, 92-100.
  •  
  • 24. Fernandes, M.M., Baeyens, B., Dähn, R., Scheinost, A., and Bradbury, M., 2012, U (VI) sorption on montmorillonite in the absence and presence of carbonate: A macroscopic and microscopic study, Geochim. Cosmochim. Acta., 93, 262-277.
  •  
  • 25. Fuller, A.J., Shaw, S., Peacock, C.L., Trivedi, D., Small, J.S., Abrahamsen, L.G., and Burke, I.T., 2014, Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment, Appl. Geochem., 40, 32-42.
  •  
  • 26. Fuller, A.J., Shaw, S., Ward, M.B., Haigh, S.J., Mosselmans, J.F.W., Peacock, C.L., Stackhouse, S., Dent, A.J., Trivedi, D., and Burke, I.T., 2015, Caesium incorporation and retention in illite interlayers. Appl. Clay Sci., 108, 128-134.
  •  
  • 27. Grambow, B., Fattahi, M., Montavon, G., Moisan, C., and Giffaut, E., 2006, Sorption of Cs, Ni, Pb, Eu (III), Am (III), Cm, Ac (III), Tc (IV), Th, Zr, and U (IV) on MX 80 bentonite: an experimental approach to assess model uncertainty, Radiochim. Acta., 94(9-11), 627-636.
  •  
  • 28. Huang, W.-L., Longo, J.M., and Pevear, D.R., 1993, An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer, Clay Clay Min., 41, 162-177.
  •  
  • 29. IAEA, 2003, Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes, International Atomic Energy Agency, Vienna, Austria.
  •  
  • 30. IAEA, 2009, Geological Disposal of Radioactive Waste: Technological Implications for Retrievability, International Atomic Energy Agency, Vienna, Austria.
  •  
  • 31. IAEA, 2011a, Geological Disposal Facilities for Radioactive Waste International Atomic Energy Agency, Vienna, Austria.
  •  
  • 32. IAEA, 2011b, The Management System for the Development of Disposal Facilities for Radioactive Waste, International Atomic Energy Agency, Vienna, Austria.
  •  
  • 33. Jenni, A., Wersin, P., Mäder, U., Gimmi, T., Thoenen, T., Baeyens, B., Hummel, W., Ferrari, A., Marschall, P., and Leupin, O., 2019, Bentonite backfill performance in a high-level waste repository: a geochemical perspective, University of Berne.
  •  
  • 34. KAERI, 2008, Korean reference HLW disposal system, Korea Atomic Energy Research Institute, Daejeon, South Korea.
  •  
  • 35. Kale, R.C. and Ravi, K., 2018, Influence of thermal loading on index and physicochemical properties of Barmer bentonite, Appl. Clay Sci., 165, 22-39.
  •  
  • 36. Kale, R.C. and Ravi, K., 2019, Influence of thermal history on swell pressures of compacted bentonite, Process Saf. Environ. Protect., 123, 199-205.
  •  
  • 37. Kaufhold, S. and Dohrmann, R., 2016, Distinguishing between more and less suitable bentonites for storage of high-level radioactive waste, Clay Min., 51(2), 289-302.
  •  
  • 38. Kim, Y., Kirkpatrick, R.J., and Cygan, R.T., 1996, 133Cs NMR study of cesium on the surfaces of kaolinite and illite, Geochim. Cosmochim. Acta., 60(21), 4059-4074.
  •  
  • 39. Lee, J., Chon, H., and John, Y., 1997, Geochemical characteristics of deep granitic groundwater in Korea, J. Kor. Soc. Groundwater Environ., 4, 199-211. Koreano.
  •  
  • 40. Lee, J., Park, S.-M., Jeon, E.-K., and Baek, K., 2017a, Selective and irreversible adsorption mechanism of cesium on illite, Appl. Geochem., 85, 188-193.
  •  
  • 41. Lee, J.O., Birch, K., and Choi, H.-J., 2014, Coupled thermal-hydro analysis of unsaturated buffer and backfill in a high-level waste repository, Ann. Nucl. Energy., 72, 63-75.
  •  
  • 42. Lee, J.O., Cho, W.J., and Choi, H., 2013, Sorption of cesium and iodide ions onto KENTEX-bentonite, Environ. Earth Sci., 70, 2387-2395.
  •  
  • 43. Lee, J.O., Choi, H., and Kim, G.Y., 2017b, Numerical simulation studies on predicting the peak temperature in the buffer of an HLW repository, Int. J. Heat Mass Transf., 115, 192-204.
  •  
  • 44. Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthes, V., and Krimissa, M., 2007, Sorption isotherms: A review on physical bases, modeling and measurement, Appl. Geochem., 22(2), 249-275.
  •  
  • 45. Mariner, P.E., Lee, J.H., Hardin, E.L., Hansen, F.D., Freeze, G.A., Lord, A.S., Goldstein, B., and Price, R.H., 2011, Granite disposal of US high-level radioactive waste, SAND2011-6203, Sandia, California.
  •  
  • 46. Marty, N.C.M., Fritz, B., Clément, A., and Michau, N., 2010, Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository, Appl. Clay Sci., 47(1-2), 82-90.
  •  
  • 47. Metz, V., Kienzler, B., and Schü©¬ler, W., 2003, Geochemical evaluation of different groundwater–host rock systems for radioactive waste disposal, J. Contam. Hydrol., 61, 265-279.
  •  
  • 48. Meunier, A. and Velde, B., 2004, Illite: Origins, evolution and metamorphism, Springer Science & Business Media.
  •  
  • 49. Missana, T., Benedicto, A., García-Gutiérrez, M., and Alonso, U., 2014a, Modeling cesium retention onto Na-, K-and Ca-smectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients, Geochim. Cosmochim. Acta., 128, 266-277.
  •  
  • 50. Missana, T., García-Gutiérrez, M., Benedicto, A., Ayora, C., and De-Pourcq, K., 2014b, Modelling of Cs sorption in natural mixed-clays and the effects of ion competition, Appl. Geochem., 49, 95-102.
  •  
  • 51. Park, T.-J. and Seoung, D., 2021, Thermal behavior of groundwater-saturated Korean buffer under the elevated temperature conditions: In-situ synchrotron X-ray powder diffraction study for the montmorillonite in Korean bentonite, Nucl. Eng. Technol.. 53(5), 1511-1518.
  •  
  • 52. Poinssot, C., Baeyens, B., and Bradbury, M.H., 1999, Experimental and modelling studies of caesium sorption on illite, Geochim. Cosmochim. Acta., 63(19-20), 3217-3227.
  •  
  • 53. Pusch, R. and Karnland, O., 1996, Physico/chemical stability of smectite clays. Eng. Geol., 41(1-4), 73-85.
  •  
  • 54. Samper, J., Zheng, L., Montenegro, L., Fernández, A.M., and Rivas, P., 2008, Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test, Appl. Geochem., 23(5), 1186-1201.
  •  
  • 55. Staunton, S. and Roubaud, M., 1997, Adsorption of 137 Cs on montmorillonite and illite: effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid, Clay Clay Min., 45(2), 251-260.
  •  
  • 56. Tetsuka, H., Katayama, I., Sakuma, H., and Tamura, K., 2018, Effects of humidity and interlayer cations on the frictional strength of montmorillonite, Earth Planets Space, 70, 56.
  •  
  • 57. Van Loon, L., Baeyens, B., and Bradbury, M., 2009, The sorption behaviour of caesium on Opalinus Clay: a comparison between intact and crushed material, Appl. Geochem., 24(5), 999-1004.
  •  
  • 58. Vuorinen, U. and Hirvonen, H., 2005, Bentonite as a colloid source in groundwaters at Olkiluoto. Posiva Oy.
  •  
  • 59. Yang, Z., Huang, L., Lu, Y., Guo, Z., Montavon, G., and Wu, W., 2010, Temperature effect on U (VI) sorption onto Na-bentonite, Radiochim. Acta., 98(12), 785-791.
  •  
  • 60. Yoo, J.-I., Shinagawa, T., Wood, J.P., Linak, W.P., Santoianni, D.A., King, C.J., Seo, Y.-C., and Wendt, J.O., 2005, High-temperature sorption of cesium and strontium on dispersed kaolinite powders, Environ. Sci. Technol., 39(13), 5087-5094.
  •  
  • 61. Yoo, M., Choi, H.-j., Lee, M.-s., and Lee, S.-y., 2016, Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository, J. Nucl. Fuel Cycle Waste Technol., 14(2), 135-147.
  •  
  • 62. Zachara, J.M., Smith, S.C., Liu, C., McKinley, J.P., Serne, R.J., and Gassman, P.L., 2002, Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA, Geochim. Cosmochim. Acta., 66(2), 193-211.
  •  
  • 63. Żbik, M.S., Song, Y.-F., Frost, R.L., and Wang, C.-C., 2012, Transmission x-ray microscopy-a new tool in clay mineral floccules characterization, Minerals, 2(4), 283-299.
  •  
  • 64. Zheng, L., Samper, J., and Montenegro, L., 2011, A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis, J. Contam. Hydrol., 126(1-2), 45-60.
  •  
  • 65. Zheng, L., Rutqvist, J., Xu, H., and Birkholzer, J.T., 2017, Coupled THMC models for bentonite in an argillite repository for nuclear waste: Illitization and its effect on swelling stress under high temperature, Eng. Geol., 230, 118-129.
  •  

This Article

  • 2021; 26(5): 29-38

    Published on Oct 31, 2021

  • 10.7857/JSGE.2021.26.5.029
  • Received on Sep 3, 2021
  • Revised on Sep 13, 2021
  • Accepted on Oct 6, 2021

Correspondence to

  • Weon Shik Han
  • Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea

  • E-mail: hanw@yonsei.ac.kr