• Effects of Mixed Planting of Green Manure Crops Supplemented with Humic Substance on the Biological Soil Health Indicators of Reclaimed Soils
  • Bumhan Bae*·Hyesun Park·Sua Kang

  • Department of Civil & Environmental Engineering, Gachon University

  • 녹비식물 혼합재배에 휴믹물질 투입이 정화처리토양의 생물학적 토양 건강성 지표에 미치는 영향
  • 배범한*·박혜선·강수아

  • 가천대학교 토목환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. 국립산림과학원, 2014, 토양및 식물체 분석법: 토양 물리성, 등록번호 11-1400377-000748-01.
  •  
  • 2. 양창휴, 신평, 백남현, 조광민, 이상복, 노태환, 이경보, 이건휘, 2014, 간척지에서 헤어리베치와 밀 혼파재배에 따른 녹비 생산성 증진 효과, J. Agric. Life Sci., 48(3), 85-91.
  •  
  • 3. Han, S.H., Jung, M.C., Kim, J.W., Jeon, S.W., Nguyen, Q.T., Yoon, K.W., and Min, S.K., 2020, The occurrence and treatment status of off-site contaminated soils in Korea, J. Soil Groundw. Environ., 25(4), 1-6.
  •  
  • 4. Allison, S.D., 2006, Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes, Biogeochemistry, 81, 361-373.
  •  
  • 5. Aon, M.A., Cabello, M.N., Sarena, D.E., Colaneri, A.C., Franco, M.G., Burgos, J.L., and Cortassa, S., 2001, Spatio-temporal patterns of soil microbial and enzymatic activities in agricultural soils, Appl. Soil Ecol., 18(3), 239-254.
  •  
  • 6. Baer, S.G. and Birge, H.E., 2018, Soil Ecosystem Service: An Overview, in Reicosky, D. (ed.), Managing Soil Health for Sustainable Agriculture Volume 1: Fundamentals, Burleigh Dodds Science Publishing, Cambridge, UK.
  •  
  • 7. Baveye, P.C., Baveye, J., and Gowdy, J., 2016, Soil ¡°Ecosystem¡± services and natural capital: Critical appraisal of research on uncertain ground, Front. Environ. Sci., 4(41), 1-49.
  •  
  • 8. Besalatpour, A., Hajabbasi, M.A., Khoshgoftarmanesh, A.H., and Dorostkar, V., 2011, Landfarming process effects on biochemical properties of petroleum-contaminated soils, Soil Sediment Contam., 20(2), 234-248.
  •  
  • 9. Canellas, L.P. and Olivares, F.L., 2014, Physiological responses to humic substances as plant growth promoter, Chem. Biol. Technol. Agric., 1(3), 1-11.
  •  
  • 10. Chen, Y., Clapp, C.E., and Magen, H., 2004, Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes, Soil Sci. Plant Nutr., 50(7), 1089-1095.
  •  
  • 11. Ekin, Z., 2019, Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture, Sustainability, 11(12), 3417-3429.
  •  
  • 12. Galitskaya, P., Biktasheva, L., Blagodatsky, S., and Selivanovskaya, S., 2021, Response of bacterial and fungal communities to high petroleum pollution in different soils, Sci. Rep., 11, 164.
  •  
  • 13. Gao, Y.-C., Guo, S.-H., Wang, J.-N., Li, D., Wang, H., and Zeng, D.-H., 2014, Effects of different remediation treatments on crude oil contaminated saline soil, Chemosphere, 117, 486-493.
  •  
  • 14. Griffiths, B.S., Hallett, P.D., Kuan, H.L., Gregory, A.S., Watts, C.W., and Whitmore, A.P., 2008, Functional resilience of soil microbial communities depends on both soil structure and microbial community composition, Biol. Fertil. Soils, 44(5), 745-754.
  •  
  • 15. Haghighi, S., Nejad, T.S., and Lack S., 2011, Effect of biological fertilizer of humic acid on metabolic process of biological nitrogen fixation, J. Life Sci., 8(3), 43-48.
  •  
  • 16. Kalam, S., Basu, A., Ahmad, I., Sayyed, R.Z., Ali El-Enshasy, H., Dailin, D.J., and Suriani, N.L., 2020, Recent understanding of soil Acidobacteria and their ecological significance: A critical review, Front. Microbiol., 11, 580024.
  •  
  • 17. Kandeler, E. and Gerber, H., 1988, Short-term assay of soil urease activity using colorimetric determination of ammonium, Biol. Fertil. Soils, 6, 68-72.
  •  
  • 18. Khaled, H. and Fawy, H.A., 2011, Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity, Soil Water Res., 6(1), 21-29.
  •  
  • 19. Kibblewhite, M.G., Ritz, K., and Swift, M.J., 2008, Soil health in agricultural systems, Philos. Trans. R. Soc. London, Ser. B, 363, 685-701.
  •  
  • 20. Kuske, C.R., Barns, S.M., and Busch, J.D., 1997, Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions, Appl. Environ. Microbiol., 63(9), 3614-3621.
  •  
  • 21. Li, Y., Fang, F., Wei, J., Wu, X., Chui, R., Li, G., Zheng, F., and Tan, D., 2019, Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment, Sci. Rep., 9, 12014.
  •  
  • 22. Li, Y., Tan., W.F., Koopal, L.K., Wang, M.X., Fan Liu, F., and Norde, W., 2013, Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease, Environ. Sci. Technol., 47(10), 5050-5056.
  •  
  • 23. Malcolm, R.E. and Vaughan, D., 1979, Humic substance and phosphatase activities in plant tissues, Soil Biol. Biochem., 11(3), 253-259.
  •  
  • 24. Martinez, M.M., Ortega, R., Janssens, M., and Fincheira, P., 2018, Use of organic amendments in table grape: effect on plant root system and soil quality indicators, J. Soil Sci. Plant Nutr., 18(1), 100-112.
  •  
  • 25. Millennium Ecosystem Assessment, 2005, Ecosystems and Human Well-Being, Island Press, Washington DC.
  •  
  • 26. Mitter, E.K., Germida, J.J., and Freitas, J.R., 2021, Impact of diesel and biodiesel contamination on soil microbial community activity and structure, Sci. Rep., 11, 10856.
  •  
  • 27. Nikbakht, A., Kafi, M., Babalar, M., Xia, Y.P., Luo, A., and Etemadi, N., 2008, Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera, J. Plant Nutr., 31, 2155-2167.
  •  
  • 28. Singh, H.P., Batish, D.R., and Kohli, R.K., 2006, Handbook of Sustainable Weed Management, CRC Press, Boca Raton, Florida, USA.
  •  
  • 29. Pape, A., Switzer, C., Mccosh, N., and Knapp, C., 2015, Impacts of thermal and smouldering remediation on plant growth and soil ecology, Geoderma, 243-244, 1-9.
  •  
  • 30. Pepper, I.L. and Gerba, C.P., 2004, Environmental Microbiology: A Laboratory Manual, 2nd Ed., Elsevier Academic Press, MA, USA.
  •  
  • 31. Reddy, M.V., Devi, M.P., Chandrasekhar, K., Goud, R.K., and Mohan, S.V., 2011, Aerobic remediation of petroleum sludge through soil supplementation: Microbial community analysis, J. Hazard. Mater., 197, 80-87.
  •  
  • 32. Silva, M.S.R.A., Tavares, O.C.H., Ribeiro, T.G., Silva, C.S.R.A., Silva, C.S.R.A., Garcia-Mina, J.M., Baldani, V.L.D., Garcia, A.C., Berbara, R.L.L., and Jusus, E.C., 2021, Humic acids enrich the plant microbiota with bacterial candidates for the suppression of pathogens, Appl. Soil Ecol., 168, 104146.
  •  
  • 33. Sun, Q, Liu J.L, Huo L.F, Li Y.C, Li X, Xia L.R, Zhou, Z., Zhang, M., and Li, B., 2020, Humic acids derived from Leonardite to improve enzymatic activities and bioavailability of nutrients in a calcareous soil, Int. J. Agric. Biol. Eng., 13(3), 200-205.
  •  
  • 34. Trevisan, S., Francioso, O., Quaggiotti, S., and Nardi, S., 2010, Humic substances biological activity at the plant-soil interface, Plant Signaling Behav., 5(6), 635-643.
  •  
  • 35. Villamil, M.B., Bollero, G.A., Darmody, R.G., Simmons, F.W., and Bullock, D.G., 2006, No-till corn/soybean systems including winter cover crops: effects on soil properties, Soil Sci. Soc. Am. J., 70(6), 1936-1944.
  •  
  • 36. Vidonish, J.E., Zygourakis, K., Masiello, C.A., Sabadell G., and Alvarez, P.J., 2016, Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation, Engineering, 2(4), 426-437.
  •  
  • 37. Zanin, L., Tomas, N., Cesco, S., Varanini, Z., and Pinton, R., 2019, Humic substances contribute to plant iron nutrition acting as chelators and biostimulants, Front. Plant Sci., 10, 675.
  •  
  • 38. Zhou, L., Li, H., Zhang, Y., Han, S., and Xu, H., 2016, Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities, Braz. J. Microbiol., 47, 271-278.
  •  

This Article

  • 2021; 26(5): 49-59

    Published on Oct 31, 2021

  • 10.7857/JSGE.2021.26.5.049
  • Received on Sep 23, 2021
  • Revised on Oct 6, 2021
  • Accepted on Oct 19, 2021

Correspondence to

  • Bumhan Bae
  • Department of Civil & Environmental Engineering, Gachon University

  • E-mail: bhbae@gachon.ac.kr