• Suggestion of Quantitative Assessment of Groundwater Resilience
  • Soonyoung Yu1·Ho-Rim Kim2*·Seong-Taek Yun3·Dong-Woo Ryu2·Byoung-Woo Yum2

  • 1Smart Subsurface Environment Management (Smart-SEM) Research Center, Korea University, Seoul 02841, Korea
    2Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea
    3Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Korea

  • 지하수 리질리언스의 정량적 평가 방안
  • 유순영1·김호림2*·윤성택3·류동우2·염병우2

  • 1고려대학교 스마트지중환경관리연구단
    2한국지질자원연구원
    3고려대학교 지구환경과학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Aamir, M.S., 2011, Value of Resilience from Critical Infrastructure Perspective, Invited talks on Critical Infrastructure Resilience, Daejeon, Korea.
  •  
  • 2. Aller, L., Bennett, T., Lehr, JH., Petty, RH., and Hackett. G., 1987. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings, USEPA Report 600/2- 87/035
  •  
  • 3. Alraggad, M., Johnsen-Harris, B., Shdaifat, A., Abugazleh, M.K., and Hamaideh, A., 2017, Groundwater resilience to climate change in the eastern Dead Sea basin – Jordan, Scientific Research and Essays, 12(3), 24-41.
  •  
  • 4. APHA, AWWA, WEF, 2001, Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.
  •  
  • 5. APN E-Lib, 2020, Mapping groundwater resilience to climate change and human development in Asian cities, https://www.apn-gcr.org/resources/items/show/2087 [accessed 21. 02. 16].
  •  
  • 6. Appelo, T. and Postma, D., 2005, Geochemistry, Ground Water and Pollution, CRC Press.
  •  
  • 7. British Geological Survey, 2019, Gateway to the Earth: Science Strategy For The British Geological Survey 2019-2023, 33p.
  •  
  • 8. British Geological Survey, 2021, Groundwater resilience: some definitions, https://www2.bgs.ac.uk/groundwater/international/africangroundwater/definitions.html [accessed 21. 10. 21]
  •  
  • 9. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O¡¯Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney, K., Wallace, W.A., and von Winterfeldt, D., 2003, A framework to quantitatively assess and enhance the seismic resilience of communities, Earthquake Spectra, 19(4), 733-752.
  •  
  • 10. Chang, S.E. and Shinozuka, M., 2004, Measuring improvements in the disaster resilience of communities, Earthquake Spectra, 20(3), 739-755.
  •  
  • 11. Choi, C., Kim, Y., Kim, J., Kim, D., Kim, J., and Kim, H.S., 2018, Indicator development and evaluation of storm and flood resilience using big data analysis: (2) Evaluation of resilience, Journal of the Korean Society of Hazard Mitigation, 18(4), 109-123.
  •  
  • 12. Choi, H.-M. and Lee, J.-Y., 2011, Groundwater contamination and natural attenuation capacity at a petroleum spilled facility in Korea, Journal of Environmental Sciences, 23(10), 1650-1659.
  •  
  • 13. Chung, S.Y., 2010, Groundwater obstructions and countermeasures for groundwater discharge from subway in Seoul, Korea, Journal of the Geological Society of Korea, 46(1), 61-72.
  •  
  • 14. Chung, S.Y., Kim, T.H., and Park, N., 2012, The Influence of the surrounding groundwater by groundwater discharge from the subway tunnel at suyeong district, Busan city, Journal of Korean Society of Soil and Groundwater Environment, 17(2), 28-36.
  •  
  • 15. Cuthbert et al., 2019, Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa, Nature, 572, 230-234.
  •  
  • 16. Cutter, S.L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., and Webb, J., 2008, A place-based model for understanding community resilience to natural disasters, Global Environmental Change, 18(4), 598-606.
  •  
  • 17. Embaby, A.A., Sadek, M.A., and Rayan, R.A., 2017, Natural attenuation capacity indicators for groundwater remediation to the northeastern cairo, Journal of Geoscience and Environment Protection, 5, 152-168.
  •  
  • 18. Foster, S., 2020, Global Policy Overview of Groundwater in Urban Development-A Tale of 10 Cities! Water, 12(2), 456; doi:10.3390/w12020456
  •  
  • 19. Foster, S., Eichholz, M., Nlend, B., and Gathu, J., 2020, Securing the critical role of groundwater for the resilient water-supply of urban Africa, Water Policy, 22(1), 121-132.
  •  
  • 20. Fuchs, E.H., Carroll, K.C., and King, J.P., 2018, Quantifying groundwater resilience through conjunctive use for irrigated agriculture in a constrained aquifer system, Journal of Hydrology, 565, 747-759.
  •  
  • 21. Gronwall, J. and Oduro-Kwarteng, S., 2017, Groundwater as a strategic resource for improved resilience: a case study from peri-urban Accra, Environmental Earth Sciences, 77(1), 6.
  •  
  • 22. Gunderson, L.H., 2000, Ecological resilience - in theory and application, Annual Review of Ecology and Systematics, 31(1), 425-439.
  •  
  • 23. Holling, C.S., 1973, Resilience and stability of ecological systems, Annual Review of Ecology and Systematics, 4, 1-23.
  •  
  • 24. Im, J., Rizzo, C.B., and de Barros, F.P.J., 2020, Resilience of groundwater systems in the presence of Bisphenol A under uncertainty, Science of the Total Environment, 727, 138363.
  •  
  • 25. Kang, H.J., Jung, S.K., Maeng, S.J., and Jang, C.D., 2015, Analysis for drought resilience of monoculture on climate change, Crisisonomy, 11(1), 63-81.
  •  
  • 26. Kim, M.S., Min, H.G., Hyun, S.H., and Kim, J.G., 2020a, Soil resilience and threat factors related to agricultural environment, Ecology and Resilient Infrastructure, 7(1), 26-42.
  •  
  • 27. Kim, M.S., Min, H.G., Hyun, S.H., and Kim, J.G., 2020b, Evaluation methods of soil resilience related to agricultural environment, Ecology and Resilient Infrastructure, 7(2), 97-113.
  •  
  • 28. Kim, Y., Choi, C., Bae, Y., Kim, D., Kim, D., and Kim, H. S., 2018, Indicator development and evaluation of storm and flood resilience using big data analysis:(1) development of resilience indicators, Journal of the Korean Society of Hazard Mitigation, 18(4), 97-107.
  •  
  • 29. Kim, Y.C. and Kim, Y.J., 2010, A review on the state of the art in the management of aquifer recharge, Journal of the Geological Society of Korea, 46(5), 521-533.
  •  
  • 30. Kim, Y.-T., Hyun, S.G., Cheong, J.-Y., Woo, N.C., and Lee, S., 2018, Hydrogeochemistry in the coastal area during construction of geological repository, Journal of Hydrology, 562, 40-49.
  •  
  • 31. Kwon, S.A., 2018, A study on local economic resilience after disasters through time series analysis-focusing on the sewol ferry disaster, The Journal of the Korea Contents Association, 18(5), 456-463.
  •  
  • 32. Lal, R., 1997, Degradation and resilience of soils, Philosophical Transactions of The Royal Society B: Biological Sciences, 352(1356), 997-1010.
  •  
  • 33. Lee, G.M., Cha, K.U., and Yi, J., 2013, Analysis of non-monotonic phenomena of resilience and vulnerability in water resources systems, Journal of Korea Water Resources Association, 46(2), 183-193.
  •  
  • 34. Lee, J.Y. and Koo, M.H., 2007, A review of effects of land development and urbanization on groundwater environment, Journal of the Geological Society of Korea, 43(4), 517-528.
  •  
  • 35. MacDonald, A.M., Bonsor, H.C., Calow, R.C., Taylor, R.G., Lapworth, D.J., Maurice, L., Tucker, J., and Ó Dochartaigh, BÉ, 2011, Groundwater resilience to climate change in Africa, British Geological Survey Open Report, OR/11/031. 25 pp.
  •  
  • 36. MacDonald, A.M., Bonsor, H.C., Taylor, R., Shamsudduha, M., Burgess, W.G., Ahmed, K.M., Mukherjee, A., Zahid, A., Lapworth, D., Gopal, K., Rao, M.S., Moench, M., Bricker, S., Yadav, S.K., Satyal, Y., Smith, L., Dixit, A., Bell, R., van Steenbergen, F., Basharat, M., Gohar, M.S., Tucker, J., Calow, R.S., and Maurice, L., 2015, Groundwater resources in the Indo-Gangetic Basin: resilience to climate change and abstraction. British Geological Survey Open Report, OR/15/047, 63pp
  •  
  • 37. Manyena, S.B., 2006. The concept of resilience revisited, Disasters, 30(4), 433-450.
  •  
  • 38. Maurice, L., Taylor, R., MacDonald, A., Sanga, H., Johnson, P., Darling, G., and Gooddy, D., 2010, Case study note: Resilience of intensive groundwater abstraction from weathered crystalline rock aquifer systems to climate change in sub-Saharan Africa, BRITISH GEOLOGICAL SURVEY Internal Report IR/10/105, 37 pp.
  •  
  • 39. MOIS (Ministry of the Interior and Safety), 2017, Study on disaster prevention projects and regulations, Sejong.
  •  
  • 40. NDMI (National Disaster Management Institute), 2010, Development of the Indicators and Checklist for Diagnosis of the Urban Resilience, Ulsan.
  •  
  • 41. Park, H.N. and Song, J.M., 2015, Identification of main factors affecting urban flood resilience using resilience using resilience cost index - A case of flooding in Seoul city, Korea, Journal of Korea Planning Association, 50(8), 95-113.
  •  
  • 42. Paton, D. and Johnston, D., 2001, Disasters and communities: vulnerabilities, resilience, and preparedness, Disaster Prevention and Management, 10(4), 270-277.
  •  
  • 43. Paton, D. and Johnston, D., 2006. Disaster Resilience: An Integrated Approach. Charles C. Thomas, Springfield, IL.
  •  
  • 44. Razafindrabe, B.H.N., Parvin, G.A., Surjan, A., Takeuchi, Y., and Shaw, R., 2009, Climate disaster resilience: Focus on coastal urban cities in Asia, Asian Journal of Environment and Disaster Management, 1(1), 101-116.
  •  
  • 45. Rose, A., 2007, Economic resilience to natural and manmade disasters: multidisciplinary origins and contextual dimensions, Environmental Hazards, 7(4), 383-398.
  •  
  • 46. Ryu, D.W., Son, B.K., Song, W.K., and Joo, K.S., 2005, A study of probabilistic groundwater flow modeling considering the uncertainty of hydraulic conductivity, Tunnel and Underground Space, 15(2), 145-156.
  •  
  • 47. Shamsudduha, M., 2013, Groundwater resilience to human development and climate change in South Asia, GWF Discussion Paper 1332, Global Water Forum, Canberra, Australia.
  •  
  • 48. Shrestha. S., Neupane, S., Mohanasundaram, S., and Pandey, V.P., 2020, Mapping groundwater resiliency under climate change scenarios: A case study of Kathmandu Valley, Nepal. Environmental Research, 183, 109149.
  •  
  • 49. Simsek, C., 2007, The GIS-integrated surficial aquifer potential mapping and its importance for aquifer protection, Kucuk Menderes Basin/West Turkey. State Hydraulic Works. International Congress on River Basin Management. Vol. 2224.
  •  
  • 50. Tierney, K. and Bruneau, M., 2007, Conceptualizing and measuring resilience: a key to disaster loss reduction, TR News May-June, 14-17.
  •  
  • 51. US DOE (Department of Energy), 1994, In situ remediation integrated program, Technical Summary, DOE/EM-0134P
  •  
  • 52. US EPA (Enviromental Protection Agency), 1994, Groundwater Treatment Technology Resource Guide, EPA/542-B-94-009
  •  
  • 53. US EPA (Enviromental Protection Agency), 2004, Handbook of Groundwater Protection and Cleanup Policies for RCRA Corrective Action. EPA530-R-04-030
  •  
  • 54. Vugrin, E.D. and Camphouse, R.C., 2011, Infrastructure resilience assessment through control design, International Journal of Critical Infrastructure, 7(3), 243-260.
  •  
  • 55. Vugrin, E.D., Turnquist, M.A., and Brown, N.J.K., 2010a, Optimal recovery sequencing for critical infrastructure resilience assessment. Sandia report, SAND2010-6237.
  •  
  • 56. Vugrin, E.D., Warren, D.E., and Ehlen, M.A., 2011, A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane, Process Safety Progress, 30(3), 280-290.
  •  
  • 57. Vugrin, E.D., Warren, D.E., Ehlen, M.A., and Camphouse, R.C., 2010b, A Framework for Assessing the Resilience of Infrastructure and Economic Systems, In Gopalakrishnan, K. and Peeta, S. (ed.) Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering. Springer-Verlag Berlin Heidelberg, 77-116.
  •  
  • 58. World bank, 2020, Managing Groundwater for Drought Resilience in South Asia. Delivered under the South Asia Water Initiative (SAWI) Regional Cross-Cutting Knowledge, Dialogue, and Cooperation Focus Area.
  •  
  • 59. Xu, Y.S., Shen, S.L., Ren, D.J., and Wu, H.N., 2016, Analysis of factors in land subsidence in Shanghai: a view based on a strategic environmental assessment, Sustainability, 8(6), 573.
  •  
  • 60. Yu, S.Y., 2011, A review of critical infrastructure resilience study as the future area of geosciences, Economic and Environmental Geology, 44(6), 533-539.
  •  
  • 61. Yu, S., An, H., Kim, S. W., Lee, K. H., and Kim, J.M., 2014, Impact analysis of disaster recovery using resilience cost index, Journal of Environmental Policy and Administration, 22(1), 31-54.
  •  
  • 62. Yu, S., Kim, S.W., Park, K.H., Oh, C.W., Park, D.K., and Kim, C.Y., 2012, Quantitative resilience analysis of Fiji to cyclones, Journal of Korean Society of Hazard Mitigation, 12(2), 55-63.
  •  
  • 63. Yu, S., Kim, S.-W., Oh, C.-W., An, H., and Kim, J.-M., 2015, Quantitative assessment of disaster resilience: An empirical study on the importance of post-disaster recovery costs, Reliability Engineering and System Safety 137, 6-17.
  •  
  • 64. Yu, S., Yoon, S.-M., Choi, E.-K., Kim, S.-D., Lee, Y.-J., Lee, Y., and Choi, K.-H., 2016, Quantitative assessment of national resilience: A case study of Mount Paektu eruption scenarios on South Korea, International Journal of Disaster Risk Reduction, 19, 118-132.
  •  

This Article

  • 2021; 26(5): 60-76

    Published on Oct 31, 2021

  • 10.7857/JSGE.2021.26.5.060
  • Received on Oct 7, 2021
  • Revised on Oct 13, 2021
  • Accepted on Oct 25, 2021

Correspondence to

  • Ho-Rim Kim
  • Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea

  • E-mail: honeius@kigam.re.kr