• A Review on Past Cases of Self-potential Surveys for Dikes and Embankments Considering Streaming Potential
  • Seo Young Song1·AHyun Cho1·Peter K. Kang2·Myung Jin Nam1,3*

  • 1Department of Energy and Mineral Resources Engineering, Sejong University, South Korea
    2Department of Earth and Envirionmental Sciences, University of Minnesota, Minneapolis, MN, USA
    3Department of Energy Resources and Geosystems Engineering, Sejong University, South Korea

  • 흐름 전위 특성을 고려한 수리시설물에서의 자연 전위 탐사 사례 고찰
  • 송서영1·조아현1·강경철2·남명진1,3*

  • 1세종대학교 에너지자원공학과
    2University of Minnesota
    3세종대학교 지구자원시스템공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ahmed, A.S., Revil, A., Steck, B., Vergniault, C., Jardani, A., and Vinceslas, G., 2019, Self-potential signals associated with localized leaks in embankment dams and dikes, Eng. Geol., 253, 229-239.
  •  
  • 2. Biswas, A., 2017, A review on modeling, inversion and interpretation of self-potential in mineral exploration and tracing paleo-shear zones, Ore Geol. Rev., 91, 21-56.
  •  
  • 3. Bièvre, G. and Norgeot, C., 2005, On the use of geophysical methods for the characterization of earth dams: A case study on the Canal du Centre, Bulletin des Laboratoires des Ponts et Chaussées, 254, 85-107.
  •  
  • 4. Bolève, A., Janod, F., Revil, A., Lafon, A., and Fry, J.J., 2011, Localization and quantification of leakages in dams using time-lapse self-potential measurements associated with salt tracer injection, J. Hydrol., 403(3-4), 242-252.
  •  
  • 5. Bolève, J., Revil, A., Janod, F., Mattiuzzo, J.L., and Fry, J.J., 2009, Preferential fluid flow pathways in embankment dams imaged by self‐potential tomography, Near Surf. Geophys., 7(5-6), 447-462.
  •  
  • 6. Bolève A., Revil A., Janod F., Mattiuzzo J.L., and Jardani A. 2007, Forward modeling and validation of a new formulation to compute self-potential signals associated with ground water flow, Hydrol. Earth. Syst. Sci., 11, 1661-1671.
  •  
  • 7. Bolève, A., Vandemeulebrouck, J., and Grangeon, J., 2012, Dyke leakage localization and hydraulic permeability estimation through self-potential and hydro-acoustic measurements: Self-potential ¡®abacus¡¯ diagram for hydraulic permeability estimation and uncertainty computation, J. Appl. Geophy., 86, 17-28.
  •  
  • 8. Boulanger, O. and Chouteau, M., 2001, Constraints in 3D gravity inversion. Geophys. Prospect., 49(2), 265-280.
  •  
  • 9. Butler, D.K. and Llopis, J.L., 1990, Assessment of anomalous seepage conditions. In Geotechnical an Environmental Geophysics: Volume II: Environmental and Groundwater (153-174), Society of Exploration Geophysicists.
  •  
  • 10. Byrdina, S., Vandemeulebrouck, J., Cardellini, C., Legaz, A., Camerlynck, C., Chiodini, G., Lebourg, T., Gresse, M., Bascou, P., Motos, G., and Carrier, A., 2014, Relations between electrical resistivity, carbon dioxide flux, and self-potential in the shallow hydrothermal system of Solfatara (Phlegrean Fields, Italy), J. Volcanol. Geotherm. Res., 283, 172-182.
  •  
  • 11. Caesary, D., Song, S.Y., Yu, H., Kim, B., and Nam, M.J., 2020, A review on CO2 leakage detection in shallow subsurface using geophysical surveys, Int. J. Greenh. Gas Control., 102, 103165.
  •  
  • 12. Chasseriau, P. and Chouteau, M., 2003, 3D gravity inversion using a model of parameter covariance, J. Appl. Geophy., 52(1), 59-74.
  •  
  • 13. Cho, I.K. and Yong, H.H., 2019, 3D Resistivity Survey for Dam Safety Inspection, Geophys. and Geophys. Explor., 22(3), 99-106.
  •  
  • 14. Corwin, R.F., Hoover, D.B., 1979, The self-potential method in geothermal exploration, Geophysics, 44(2), 131-277.
  •  
  • 15. Crespy, A., Bolève, A., and Revil, A., 2007, Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular media, J. Colloid Interface Sci., 305(1), 188-194.
  •  
  • 16. Dahlin, T., Sjödahl, P., Friborg, J., and Johansson, S., 2001, Resistivity and SP surveying and monitoring at the Sädva Embankment Dam, Sweden. Dams in a European Context, Mist©ªmme GH, Honningsvag B, Repp K, Vaskinn KA, Westeren T (eds), 107-113.
  •  
  • 17. Ernstson, K., Scherer, H.U., 1986, Self-potential variations with time and their relation to hydrogeologic and meteorological parameters, Geophysics, 51(10), 1879-2018.
  •  
  • 18. Giampaolo, V., Capozzoli, L., Grimaldi, S., and Rizzo, E., 2016, Sinkhole risk assessment by ERT: The case study of Sirino Lake (Basilicata, Italy), Geomorphology (Amst), 253, 1-9.
  •  
  • 19. Giampaolo, V., Rizzo, E., Titov, K., Konosavsky, P., Laletina, D., Maineult, A., and Lapenna, V., 2014, Self-potential monitoring of a crude oil-contaminated site (Trecate, Italy). Environ. Sci. Pollut. Res., 21(15), 8932-8947.
  •  
  • 20. Graham, M., 2018, Modelling Self-potentials as a Predictor of Seawater Intrusion in Coastal Groundwater Boreholes.
  •  
  • 21. Ikard, S.J., Revil, A., Schmutz, M., Karaoulis, M., Jardani, A., and Mooney, M., 2014, Characterization of focused seepage through an earthfill dam using geoelectrical methods, Groundwater, 52(6), 952-965.
  •  
  • 22. Ishido, T. and Mizutani, H., 1981, Experimental and theoretical basis of electrokinetic phenomena in rock–water systems and its application to geophysics, J. Geophys. Res., 86(B3), 1763-1775.
  •  
  • 23. Jardani, A., Dupont, J.P., and Revil, A., 2006, Self‐potential signals associated with preferential groundwater flow pathways in sinkholes, J. Geophys. Res.: Solid Earth, 111(B9).
  •  
  • 24. Jardani, A., Revil, A., Barrash, W., Crespy, A., Rizzo, E., Straface, S., Cardiff, M., Malama, B., Miller, C., and Johnson, T., 2009, Reconstruction of the water table from self‐potential data: A Bayesian approach, Groundwater, 47(2), 213-227.
  •  
  • 25. Jardani A., Revil A., Bolève A., Dupont J.P., Barrash W., and Malama B., 2007b, Tomography of groundwater flow from self-potential (SP) data, Geophys. Res. Lett., 34, L24403. doi:10.1029/2007GL031907
  •  
  • 26. Jardani A., Revil A., Santos F., Fauchard C., and Dupont, J.P. 2007a, Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data, Geophys. Prospect., 55, 1-11. doi:10.1111/j.1365-2478.2007.00638.x.
  •  
  • 27. Jardani, A., Revil, A., Santos, F., Fauchard, C., and Dupont, J.P., 2007, Detection of preferential infiltration pathways in sinkholes using joint inversion of self‐potential and EM‐34 conductivity data, Geophys. Prospect., 55(5), 749-760.
  •  
  • 28. Jouniaux, L., Maineult, A., Naudet, V., Pessel, M., and Sailhac, P., 2009, Review of self-potential methods in hydrogeophysics, Comptes Rendus Geoscience, 341(10-11), 928-936.
  •  
  • 29. Kang, H.J., Cho, I.K., Kim, J.H., Yong, H.H., Song, S.H., and Park, Y.G., 2014, SP monitoring at a sea dike, Near Surf. Geophys., 12(1), 83-92.
  •  
  • 30. Kosmulski, M. and Dahlsten, P., 2006, High ionic strength electrokinetics of clay minerals. Colloids Surf. A: Physicochem. Eng. Aspects, 291(1-3), 212-218.
  •  
  • 31. Leroy, P. and Revil, A., 2004, A triple layer model of the surface electrochemical properties of clay minerals, J. Colloid Interf. Sci., 270(2), 371-380.
  •  
  • 32. Lim, S.K., 2018, Analysis of a weak zone in embankment close to a drainage using resistivity monitoring data, Geophys. and Geophys. Explor., 21(1), 8-14.
  •  
  • 33. MacAllister, D.J., Jackson, M.D., Butler, A.P., and Vinogradov, J., 2018, Remote detection of saline intrusion in a coastal aquifer using borehole measurements of self‐potential, Water Resour., 54(3), 1669-1687.
  •  
  • 34. Minsley, B.J., Burton, B.L., Ikard, S., and Powers, M.H., 2011, Hydrogeophysical investigations at hidden dam, Raymond, California, J. Environ. Eng. Geoph., 16(4), 145-192.
  •  
  • 35. Minsley B.J., Sogade J., and Morgan F.D., 2007a, Three-dimensional selfpotential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina, Water Resour, 43, W04429. doi:10.1029/2005WR003996
  •  
  • 36. Minsley B.J., Sogade J., and Morgan, F.D., 2007b, Three-dimensional source inversion of self-potential data, J. Geophys. Res. 112, B02202.
  •  
  • 37. Moore, J.R., Boleve, A., Sanders, J.W., and Glaser, S.D., 2011, Self-potential investigation of moraine dam seepage, J. Appl. Geophy., 74(4), 277-286.
  •  
  • 38. Morgan, F.D., Williams, E.R., and Madden, T.R., 1989, Streaming potential properties of westerly granite with applications, J. Geophys. Res., 94(B9), 12449-12461.
  •  
  • 39. Mualem, Y., 1986, Hydraulic conductivity of unsaturated soils: Prediction and formulas, In: Methods of Soil Analysis (ed. A. Klute), American Society of Agronomy, 799-823.
  •  
  • 40. Panthulu, T.V., Krishnaiah, C., and Shirke, J.M., 2001, Detection of seepage paths in earth dams using self-potential and electrical resistivity methods, Eng. Geol., 59(3-4), 281-295.
  •  
  • 41. Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E., and Sdao, F., 2004, High-resolution electrical imaging of the Varco d'Izzo earthflow (southern Italy), J. Appl. Geophy., 56(1), 17-29.
  •  
  • 42. Revil, A. and Leroy, P., 2004, Constitutive equations for ionic transport in porous shales, J. Geophys. Res. 109, B03208.
  •  
  • 43. Revil, A. and Linde, N., 2006, Chemico-electromechanical coupling in microporous media, J. of Colloid and Interface Sci., 302(2), 682-694.
  •  
  • 44. Revil, A., Cathles, L.M., Losh, S., and Nunn, J.A., 1998, Electrical conductivity in shaly sands with geophysical applications, J. Geophys. Res., 103(B10), 23925-23936.
  •  
  • 45. Revil, A., Hermitte, D., Spangenberg, E., and Cochémé, J.J., 2002, Electrical properties of zeolitized volcaniclastic materials, J. Geophys. Res., 107(B8), 2168.
  •  
  • 46. Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S., and Finsterle, S., Electrokinetic coupling in unsaturated porous media, J. Colloid Interface Sci., 313(1), 315-327.
  •  
  • 47. Revil, A., Naudet, V., and Meunier, J.D., 2004, The hydroelectric problem of porous rocks: inversion of the position of the water table from self-potential data, Geophys. J. Int., 159(2), 435-444.
  •  
  • 48. Rittgers, J.B., Revil, A., Planes, T., Mooney, M.A., and Koelewijn, A.R., 2015, 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization, Geophys J. Int., 200(2), 758-772.
  •  
  • 49. Rozycki, A., Fonticiella, J.M.R., and Cuadra, A., 2006, Detection and evaluation of horizontal fractures in Earth dams using self-potential method, Eng. Geol., 82(3), 145-153.
  •  
  • 50. Sato, M. and Mooney, H.M., 1960, The electrochemical mechanism of sulfide self-potentials, Geophysics, 25(1), 226-249.
  •  
  • 51. Sill, W.R., 1983, Self-potential modeling from primary flows, Geophysics, 48(1), 76-86.
  •  
  • 52. Soldi, M., Jougnot, D., and Guarracino, L., 2019, An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow, Geophys. J. Int., 216(1), 380-394.
  •  
  • 53. Song, S.H., 2001, Self-potential method for detection of water leakage in dike and embankment, Doctoral dissertation, Seoul National University.
  •  
  • 54. Song, S.H., Kwon, B.D., Yang, J.M., and Chung, S.H., 2002, Application of SP Survey and Numerical Modeling to the Leakage Problem of Irrigation facilities, Geophys. and Geophys. Explor., 5(4), 257-261 (in Korean with English abstract).
  •  
  • 55. Song, S.H., Lee, K.S., Kim, J.H., and Kwon, B.D., 2000, Application of SP and pole-pole array electrical resistivity surveys to the seawater leakage problem of the embankment, Econ. Environ. Geol., 33(5), 417-424.
  •  
  • 56. Song, S.H., Song, Y., and Kwon, B.D., 2005, Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam, Explor. Geophys., 36(1), 73-77.
  •  
  • 57. Song, S.Y. and Nam, M.J., 2018, A Technical Review on Principles and Practices of Self-potential Method Based on Streaming Potential, Geophys. and Geophys. Explor., 21(4), 231-243.
  •  
  • 58. Titov, K., Loukhmanov, V., and Potapov, A., 2000, Monitoring of water seepage from a reservoir using resistivity and self polarization methods: case history of the Petergoph fountain water supply system, First Break, 18(10).
  •  
  • 59. van Genuchten, M.T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44(5), 892-898.
  •  
  • 60. Wang, F., Okeke, A.C.U., Kogure, T., Sakai, T., and Hayashi, H., 2018, Assessing the internal structure of landslide dams subject to possible piping erosion by means of microtremor chain array and self-potential surveys, Eng. Geol., 234, 11-26.
  •  
  • 61. Waxman, M.H. and Smits, L.J.M., 1968, Electrical conduction in oilbearing sands, Soc. of Pet. Eng. J., 8, 107-122.
  •  
  • 62. Westermann-Clark, G.B. and Christoforou, C.C., 1986, The exclusion-diffusion potential in charged porous membranes, J. Electroanal. Chem., 198(2), 213-231.
  •  
  • 63. Yang, J.M., 2001, Investigation of SP mechanism and development of interpretation algorithm at irrigation facilities, Master¡¯s thesis, Seoul National University.
  •  
  • 64. Yu, H., Kim, B., Song, S.Y., Cho, S.O., Caesary, D., and Nam, M.J., 2019, Change in Physical Properties depending on Contaminants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection, Geophys. and Geophys. Explor., 22(3), 132-148.
  •  

This Article

  • 2021; 26(6): 1-17

    Published on Dec 31, 2021

  • 10.7857/JSGE.2021.26.6.001
  • Received on Oct 6, 2021
  • Revised on Oct 13, 2021
  • Accepted on Nov 29, 2021

Correspondence to

  • Myung Jin Nam
  • 1Department of Energy and Mineral Resources Engineering, Sejong University, South Korea
    3Department of Energy Resources and Geosystems Engineering, Sejong University, South Korea

  • E-mail: nmj1203@sejong.ac.kr