• Determination of Site-specific Denitrification Rate for Nitrate Reactive Transport Modeling in Groundwater
  • Sang Hyun Kim1·Jaeshik Chung1,2*·Seunghak Lee1,2,3*

  • 1Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
    2Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
    3Graduate School of Energy and Environment (KU-KIST Green School), Seoul 20841, Republic of Korea

  • 지하수 내 질산성 질소 반응-이동 모델링을 위한 부지특이적 탈질화 계수 선정 방안에 대한 고찰
  • 김상현1·정재식1,2*·이승학1,2,3*

  • 1한국과학기술연구원 물자원순환연구단
    2과학기술연합대학원대학교(UST) 에너지-환경융합전공
    3고려대학교 에너지환경대학원

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. 석희준, 전철민, 2009, 농촌지역의 질산성질소 거동 해석을 위한 모델 개발 및 현장 적용, 자원환경지질, 42(6), 561-574.
  •  
  • 2. 토양지하수정보시스템, https://sgis.nier.go.kr//web/contents/contentView/?pMENU_NO=109 [accessed 21.11.17.].
  •  
  • 3. 환경부, 2021, 지하수의 수질보전 등에 관한 규칙, 환경부령 제942호.
  •  
  • 4. Almasri, M.N. and Kaluarachchi, J.J., 2007, Modeling nitrate contamination of groundwater in agricultural watersheds, J. Hydrol., 343(3-4), 211-229.
  •  
  • 5. Barnes, R.T., Smith, R.L., and Aiken, G.R., 2012, Linkages between denitrification and dissolved organic matter quality, Boulder Creek watershed, Colorado, J. Geophys. Res. Biogeosci., 117.
  •  
  • 6. Birkinshaw, S.J. and Ewen, J., 2000, Nitrogen transformation component for SHETRAN catchment nitrate transport modelling, J. Hydrol., 230(1-2), 1-17.
  •  
  • 7. Bonton, A., Rouleau, A., Bouchard, C., and Rodriguez, M.J., 2011, Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area, Agric. Syst., 104(5), 429-439.
  •  
  • 8. Böttcher, J., Strebel, O., Voerkelius, S., and Schmidt, H.L., 1990, Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hydrol., 114(3-4), 413-424.
  •  
  • 9. Bradley, P.M., Fernandez Jr, M., and Chapelle, F.H., 1992, Carbon limitation of denitrification rates in an anaerobic groundwater system, Environ. Sci. Technol., 26(12), 2377-2381.
  •  
  • 10. Burri, N.M., Weatherl, R., Moeck, C., and Schirmer, M., 2019, A review of threats to groundwater quality in the anthropocene, Sci. Total Environ., 684, 136-154.
  •  
  • 11. Chowdary, V.M., Rao, N.H., and Sarma, P.B.S., 2004, A coupled soil water and nitrogen balance model for flooded rice fields in India, Agric. Ecosyst. Environ., 103(3), 425-441.
  •  
  • 12. Chung, J., Chung, J.H., and Townsend, T.G., 2019, Approximation of transient redox boundary conditions: its application to numerical analysis of iron plume migration near landfills, Environ. Earth. Sci., 78, 711.
  •  
  • 13. Clement, T.P., 1999, A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater systems, United States.
  •  
  • 14. De Catanzaro, J.B. and Beauchamp, E.G., 1985, The effect of some carbon substrates on denitrification rates and carbon utilization in soil, Biol. Fertil. Soils, 1, 183-187.
  •  
  • 15. Devito, K.J., Fitzgerald, D., Hill, A.R., and Aravena, R., 2000, Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone, J. Environ. Qual., 29(4), 1075-1084.
  •  
  • 16. Dhakal, P., Matocha, C.J., Huggins, F.E., and Vandiviere, M.M., 2013, Nitrite reactivity with magnetite, Environ. Sci. Technol., 47(12), 6206-6213.
  •  
  • 17. Francis, A.J., Slater, J.M., and Dodge, C.J., 1989, Denitrification in deep subsurface sediments, Geomicrobiol. J., 7(1-2), 103-116.
  •  
  • 18. Frind, E.O., Duynisveld, W.H.M., Strebel, O., and Boettcher, J., 1990, Modeling of multicomponent transport with microbial transformation in groundwater: The fuhrberg case, Water Resour. Res., 26(8), 1707-1719.
  •  
  • 19. Gu, C. and Riley, W.J., 2010, Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling - a modeling analysis, J. Contam. Hydrol., 112(1-4), 141-154.
  •  
  • 20. Gupta, P.K., Kumari, B., Gupta, S.K., and Kumar, D., 2020, Nitrate-leaching and groundwater vulnerability mapping in North Bihar, India, Sustain. Water Resour. Manag., 6, 1-12.
  •  
  • 21. Hansen, H.C.B., 1989, Composition, stabilization, and light absorption of Fe (II) Fe (III) hydroxy-carbonate (¡®green rust¡¯), Clay Miner., 24(4), 663-669.
  •  
  • 22. Harrison, M.D., Groffman, P.M., Mayer, P.M., Kaushal, S.S., and Newcomer, T.A., 2011, Denitrification in alluvial wetlands in an urban landscape, J. Environ. Qual., 40(2), 634-646.
  •  
  • 23. Huan, H., Hu, L., Yang, Y., Jia, Y., Lian, X., Ma, X., Jiang, Y., and Xi, B., 2020, Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer, Environ. Int., 137, 105532.
  •  
  • 24. Jahangir, M.M., Johnston, P., Addy, K., Khalil, M.I., Groffman, P., and Richards, K.G., 2013, Quantification of in situ denitrification rates in groundwater below an arable and a grassland system, Water Air Soil Pollut., 224, 1-14.
  •  
  • 25. Jeon, J.-H., Lee, W.-C., Lee, S.-W., and Kim, S.-O., 2020, The effect of geological media on the denitrification of nitrate in subsurface environments, J. Soil Groundw. Environ., 25, 16-27.
  •  
  • 26. Karanasios, K., Vasiliadou, I., Pavlou, S., and Vayenas, D., 2010. Hydrogenotrophic denitrification of potable water: A review, J. Hazard. Mater., 180(1-3), 20-37.
  •  
  • 27. Koh, E.-H., Kaown, D., Mayer, B., Kang, B.-R., Moon, H.S., and Lee, K.-K., 2012, Hydrogeochemistry and isotopic tracing of nitrate contamination of two aquifer systems on Jeju Island, Korea, J. Environ. Qual., 41(6), 1835-1845.
  •  
  • 28. Koh, E.-H., Lee, E., Kaown, D., Green, C.T., Koh, D.-C., Lee, K.-K., and Lee, S.H., 2018, Comparison of groundwater age models for assessing nitrate loading, transport pathways, and management options in a complex aquifer system, Hydrol. Process., 32(7), 923-938.
  •  
  • 29. Koh, E.-H., Lee, E., and Lee, K.-K., 2016. Impact of leaky wells on nitrate cross-contamination in a layered aquifer system: Methodology for and demonstration of quantitative assessment and prediction, J. Hydrol., 541, 1133-1144.
  •  
  • 30. Koh, E.-H., Lee, E., and Lee, K.-K., 2020, Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination: Implications for an effective groundwater management strategy, J. Environ. Manage., 268, 110646.
  •  
  • 31. Langergraber, G. and Šimůnek, J., 2005. Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands, Vadose Zone J., 4(4), 924-938.
  •  
  • 32. Lasserre, F., Razack, M., and Banton, O., 1999, A gis-linked model for the assessment of nitrate contamination in groundwater, J. Hydrol., 224(3-4), 81-90.
  •  
  • 33. Lee, M.-S., Lee, K.-K., Hyun, Y., Clement, T.P., and Hamilton, D., 2006, Nitrogen transformation and transport modeling in groundwater aquifers, Ecol. Model., 192(1-2), 143-159.
  •  
  • 34. Lin, Y.-H. and Gu, Y.-J., 2020, Denitrification kinetics of nitrate by a heterotrophic culture in batch and fixed-biofilm reactors, Processes, 8(5), 547.
  •  
  • 35. Lind, A.-M., 1983, Nitrate Reduction in the Subsoil, in Denitrification in the Nitrogen Cycle, edited by H. L. Goiterman,. Plenum, New York.
  •  
  • 36. Meisinger, J. and Randall, G., 1991, Estimating nitrogen budgets for soil‐crop systems. In Managing nitrogen for groundwater quality and farm profitability, Soil Science Society of America, Inc. Madison Wisconsin, USA.
  •  
  • 37. Morris, J.T., Whiting, G.J., and Chapelle, F.H., 1988, Potential denitrification rates in deep sediments from the southeastern coastal plain, Environ. Sci. Technol., 22(7), 832-836.
  •  
  • 38. Pabich, W.J., Valiela, I., and Hemond, H.F., 2001, Relationship between doc concentration and vadose zone thickness and depth below water table in groundwater of cape cod, U.S.A. Biogeochemistry, 55, 247-268.
  •  
  • 39. Poulsen, R., Cedergreen, N., Hayes, T., and Hansen, M., 2018, Nitrate: An environmental endocrine disruptor? A review of evidence and research needs, Environ. Sci. Technol., 52(7), 3869-3887.
  •  
  • 40. Re, V., Sacchi, E., Kammoun, S., Tringali, C., Trabelsi, R., Zouari, K., and Daniele, S., 2017, Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia), Sci. Total Environ., 593-594, 664-676.
  •  
  • 41. Robertson, W.D. and Merkley, L.C., 2009, In-stream bioreactor for agricultural nitrate treatment, J. Environ. Qual., 38(1), 230-237.
  •  
  • 42. Senko, J.M., Dewers, T.A., and Krumholz, L.R., 2005, Effect of oxidation rate and Fe (II) state on microbial nitrate-dependent Fe (III) mineral formation, Appl. Environ. Microbiol., 71, 7172-7177.
  •  
  • 43. Shamrukh, M., Corapcioglu, M.Y., and Hassona, F.A., 2001, Modeling the effect of chemical fertilizers on ground water quality in the Nile Valley Aquifer, Egypt, Groundwater, 39(1), 59-67.
  •  
  • 44. Tilstra, A., El-Khaled, Y.C., Roth, F., Rädecker, N., Pogoreutz, C., Voolstra, C.R., and Wild, C., 2019, Denitrification aligns with N2 fixation in Red Sea corals, Sci. Rep., 9, 19460.
  •  
  • 45. Van Rijn, J., Tal, Y. and Barak, Y., 1996, Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor, Appl. Environ. Microbiol., 62, 2615-2620.
  •  
  • 46. Wei, X., Bailey, R.T., Records, R.M., Wible, T.C., and Arabi, M., 2019, Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model, Environ. Model. Softw., 122, 104242.
  •  
  • 47. Well, R., Augustin, J., Meyer, K., and Myrold, D., 2003, Comparison of field and laboratory measurement of denitrification and N2O production in the saturated zone of hydromorphic soils, Soil Biol. Biochem., 35(6), 783-799.
  •  
  • 48. Xu, D., Li, Y., Howard, A., and Guan, Y., 2013, Effect of earthworm eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland, Chemosphere, 92(2), 201-206.
  •  

This Article

  • 2021; 26(6): 74-81

    Published on Dec 31, 2021

  • 10.7857/JSGE.2021.26.6.074
  • Received on Nov 24, 2021
  • Revised on Nov 30, 2021
  • Accepted on Dec 13, 2021

Correspondence to

  • Seunghak Lee
  • 1Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
    2Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
    3Graduate School of Energy and Environment (KU-KIST Green School), Seoul 20841, Republic of Korea

  • E-mail: jschung@kist.re.kr