• Quantitative Assessment of Coastal Groundwater Vulnerability to Seawater Intrusion using Density-dependent Groundwater Flow Model
  • Chang, Sun Woo*

  • Korea Institute of Civil Engineering and Building Technology, Gyeonggi-Do 10223, Korea

  • 분산형 해수침투 모델을 이용한 양적 지표 기반의 해안지하수 취약성 평가연구
  • 장 선 우*

  • 한국건설기술연구원

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Chachadi, A.G. and Lobo-Ferreira, J.P, 2001, Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Proc. Workshop on modelling in hydrogeology, Anna University, Chennai, pp.143-156, and in COASTIN A Coastal Policy Research Newsletter, Number 4, March 2001. New Delhi, TERI, 7-9.
  •  
  • 2. Chang, S.W., Nemec, K., Kalin, L., and Clement, T.P., 2016, Impacts of climate change and urbanization on groundwater resources in a barrier island, J. Environ. Eng., 142(12), D4016001
  •  
  • 3. Chang, S.W., Chung, I.-M., Kim, M.-G., Tolera, M., and Koh, G.-W., 2019, Application of GALDIT in Assessing the Seawater Intrusion Vulnerability of Jeju Island, South Korea, Water, 11, 1824.
  •  
  • 4. Chang, S.W., Chung, I.-M., Kim, M.-G. and Yifru, B.A., 2020, Vulnerability assessment considering impact of future groundwater exploitation on coastal groundwater resources in northeastern Jeju Island, South Korea, Environ. Earth Sci., 79, 498, doi:10.1007/s12665-020-09254-2.
  •  
  • 5. Chun, J.A., Lim, C., Kim, D., Kim, J.S., 2018, Assessing Impacts of Climate Change and Sea-Level Rise on Seawater Intrusion in a Coastal Aquifer, Water, 10(4), 357.
  •  
  • 6. El-Kadi, A.I., Tillery, S., Whittier, R.B., Hagedorn, B., Mair, A., Ha, K., and Koh, G.-W., 2014, Assessing sustainability of groundwater resources on Jeju Island, South Korea, under climate change, drought, and increased usage, Hydrogeol. J., 22, 625-642, doi:10.1007/s10040-013-1084-y.
  •  
  • 7. Fahs, M., Ataie-Ashtiani, B., Younes, A., Simmons, C.T., and Ackerer, P., 2016, The Henry problem: New semianalytical solution for velocity-dependent dispersion, Water Resour. Res., 52(9), 7382-7407, doi:10.1002/2016wr019288.
  •  
  • 8. Giambastiani, B.M.S., Antonellini, M., Oude Essink, G.H.P., and Stuurman, R.J., 2007, Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): A numerical model, J. Hydrol., 340(1-2), 91-104.
  •  
  • 9. Goswami, R.R. and Clement, T.P., 2007, Laboratory-scale investigation of saltwater intrusion dynamics, Water Resour. Res., 43(4), doi: 10.1029/2006WR005151.
  •  
  • 10. Henry, H.R., 1964, Effects of dispersion on salt encroachment in coastal aquifers, U.S. Geological Survey Water-Supply Paper Rep. 1613-C, C71-C84. pp.
  •  
  • 11. Guo, W. and Langevin, C.D., 2002, User's Guide to SEWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Ground-Water Flow, United States Geological Survey.
  •  
  • 12. Lee, E., Kang, K., Hyun, S.P., Lee, K.‐Y., Yoon, H., Kim, S.H., Kim, Y., Xu, Z., Kim, D., Koh, D. ‐C., and Ha, K., 2016, Submarine groundwater discharge revealed by aerial thermal infrared imagery: a case study on Jeju Island, Korea, Hydrol. Process, 30(19), 3494-3506. doi: 10.1002/hyp.10868.
  •  
  • 13. Morgan, L.K. and Werner, A.D., 2015, A national inventory of seawater intrusion vulnerability for Australia, J. Hydrol., 4, 686-698, doi:https://doi.org/10.1016/j.ejrh.2015.10.005.
  •  
  • 14. Oude Essink, G.H.P., van Baaren, E.S., and de Louw, P.G.B., 2010, Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands, Water Resour. Res., 46(10), W00F04, doi:10.1029/2009wr008719
  •  
  • 15. Praveena, S.M. and Aris, A.Z., 2009, Groundwater resources assessment using numerical model: A case study in low-lying coastal area, Int. J. Environ. Sci. Technol., 7, 135-146.
  •  
  • 16. Ranjan, P., Kazama, S., Sawamoto, M., 2006, Effects of climate and land use changes on groundwater resources in coastal aquifers, J. Environ. Manage., 80, 25-35. doi:https://doi.org/10.1016/j.jenvman.2005.08.008.
  •  
  • 17. Shin, J. and Hwang, S., 2020, A borehole-based approach for seawater intrusion in heterogeneous coastal aquifers, eastern part of Jeju Island, Korea, Water, 12(2), 609.
  •  
  • 18. Sulzbacher, H., Wiederhold, H., Siemon, B., Grinat, M., Igel, J., Burschil, T., Günther, T., and Hinsby, K., 2012, Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods, Hydrol. Earth Syst. Sci., 16, 3621-3643. doi: 10.5194/hess-16-3621-2012.
  •  
  • 19. Vandenbohede, A. and Lebbe, L., 2002, Numerical modelling and hydrochemical characterisation of a fresh-water lens in the Belgian coastal plain, Hydrogeol. J., 10, 576-586. https://doi.org/10.1007/s10040-002-0209-5
  •  
  • 20. Werner, A.D., Ward, J.D., Morgan, L.K., Simmons, C.T., Robinson, N.I., and Teubner, M.D., 2011, Vulnerability Indicators of Sea Water Intrusion, Ground Water, 50(1), 48-58 doi:10.1111/j.1745-6584.2011.00817.x.
  •  
  • 21. Werner, A.D., Bakker, M., Post, V.E.A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., and Barry, D.A., 2013, Seawater intrusion processes, investigation and management: Recent advances and future challenges, Adv. Water Resour., 51, 3-26.
  •  

This Article

  • 2021; 26(6): 95-105

    Published on Dec 31, 2021

  • 10.7857/JSGE.2021.26.6.095
  • Received on Nov 29, 2021
  • Revised on Dec 6, 2021
  • Accepted on Dec 14, 2021

Correspondence to

  • Chang, Sun Woo
  • Korea Institute of Civil Engineering and Building Technology, Gyeonggi-Do 10223, Korea

  • E-mail: chang@kict.re.kr