• Suggestion and Evaluation for Prediction Method of Landslide Occurrence using SWAT Model and Climate Change Data: Case Study of Jungsan-ri Region in Mt. Jiri National Park
  • Kim Jisu1·Kim Minseok2*·Cho Youngchan2·Oh Hyunjoo2·Lee Choonoh2

  • 1Department of Social studies Education, Chonnam National University, Gwangju, Korea
    2Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources

  • SWAT model과 기후변화 자료를 이용한 산사태 예측 기법 제안과 평가: 지리산 국립공원 중산리 일대 사례연구
  • 김지수1·김민석2*·조용찬2·오현주2·이춘오2

  • 1전남대학교 일반대학원 사범대학 사회교육학과, 2한국지질자원연구원 지질환경연구본부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abbaspour, K.C., 2013, Swat-cup 2012 SWAT calibration and uncertainty program-A user manual, Zurich, 1-106.
  •  
  • 2. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R., 1998, Large area hydrologic modeling and assessment part I: model development 1, JAWRA Journal of the American Water Resources Association, 34(1), 73-89.
  •  
  • 3. Catani, F., Segoni, S., and Falorni, G., 2010, An empirical geomorphology‐based approach to the spatial prediction of soil thickness at catchment scale, Water resources research, 46(5).
  •  
  • 4. Chen, H., Luo, Y., Potter, C., Moran, P.J., Grieneisen, M.L., and Zhang, M., 2017, Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT, Water res., 121, 374-385.
  •  
  • 5. Das, B. M., and Sobhan, K., 2013, Principles of geotechnical engineering. Cengage learning.
  •  
  • 6. Di Luzio, M., Arnold, J.G., and Srinivasan, R., 2005, Effect of GIS data quality on small watershed stream flow and sediment simulations, Hydrological Processes: An International Journal, 19(3), 629-650.
  •  
  • 7. Fawcett, T., 2006, An introduction to ROC analysis, Pattern Recognition Letters, 27(8), 861-874.
  •  
  • 8. FitzHugh, T.W. and Mackay, D.S., 2000, Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model, Journal of hydrology, 236(1-2), 35-53.
  •  
  • 9. Hong, W.Y., Park, G.A., Jeong, I.K., and Kim, S.J., 2010, Development of a Grid-based Daily Watershed Runoff Model and the Evaluation of Its Applicability, Journal of the Korean Society of Civil Engineers, 30(5B), 459-469.
  •  
  • 10. Hong, W.Y., Park, M.J., Park, J.Y., Ha, R., Park, G.A., and Kim, S.J., 2009, The Correlation Analysis Between SWAT Predicted Forest Soil Moisture and MODIS NDVI During Spring Season. Journal of The Korean Society of Agricultural Engineers, 51(2), 7-14.
  •  
  • 11. Jang, S.S. and Kim, S.J., 2017, Assessment of Climate Change Impact on Highland Agricultural Watershed Hydrologic Cycle and Water Quality under RCP Scenarios using SWAT, Journal of The Korean Society of Agricultural Engineers, 59(3), 41-50.
  •  
  • 12. Jeong, S.S., Choi, J.Y., and Lee, J.H., 2009, Stability Analysis of Unsaturated Weathered Soil Slopes Considering Rainfall Duration, Journal of the Korean Society of Civil Engineers C, 29(1), 1-9.
  •  
  • 13. Joh, H.K., Lee, J.W., SHIN, H.J., Park, G.A., and Kim, S.J., 2010, Evaluation of Evapotranspiration and Soil Moisture of SWAT Simulation for Mixed Forest in the Seolmacheon Catchment, Korean J. Agric. For. Meteorol., 12(4), 289-297.
  •  
  • 14. Kim, D.H. and Kim, S.M., 2017, Estimation of Inflow into Namgang Dam according to Climate Change using SWAT Model, Journal of The Korean Society of Agricultural Engineers, 59(6), 9-18.
  •  
  • 15. Kim, J.S, Kim, M.S., Kim, J.K., Oh, H.J., and Woo, C.S., 2021, Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model, Journal of The Korean Geomorphologic Association, 28(2), 31-44.
  •  
  • 16. Kim, S.W., Chun, K.W., Kim, M.S., Catani, F., Choi, B.G., and Seo, J.I., 2021, Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea, Landslides, 18, 569-582.
  •  
  • 17. Kim, Y.J., Kim, W.Y., Yu, I.H., Lee, S.R., and Min, K.D., 1994, Analysis of Geological Risk and Excavation Index using GIS Techinque, J. Eng. Geol., 4(1), 43-55.
  •  
  • 18. Korea Institute of Construction Technology, 2007, 21st Century Frontier R&D Program - Sustainable Water Resources Research Program: Development of Analysing System for Surface Water Hydrological Components.
  •  
  • 19. Milledge, D.G., Griffiths, D.V., Lane, S.N., and Warburton, J., 2012. Limits on the validity of infinite length assumptions for modelling shallow landslides, Earth Surf. Process. Landf., 37(11), 1158-1166.
  •  
  • 20. Moore, I.D., Grayson, R.B., and Ladson, A.R., 1991, Digital terrain modelling: a review of hydrological, geomorphological, and biological applications, Hydrological Processes, 5(1), 3-30.
  •  
  • 21. Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P., 2015, Hydrologic and water quality models: Performance measures and evaluation criteria, Transactions of the ASABE, 58(6), 1763-1785.
  •  
  • 22. Nash, J.E. and Sutcliffe, J.V., 1970, River flow forecasting through conceptual models part I-A discussion of principles, Journal of Hydrology, 10(3), 282-290.
  •  
  • 23. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R., 2011, Soil and water assessment tool theoretical documentation version 2009, Texas Water Resources Institute.
  •  
  • 24. Sharma, A. and Tiwari, K.N., 2014, A comparative appraisal of hydrological behavior of SRTM DEM at catchment level, Journal of Hydrology, 519, 1394-1404.
  •  
  • 25. Tarolli, P., 2014, High-resolution topography for understanding earth surface processes: opportunities and challenges. Geomorphology, 216, 295-312.
  •  
  • 26. Troch, P., Van Loon, E., and Hilberts, A., 2002, Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Advances in Water Resources, 25(6), 637-649.
  •  
  • 27. Wechsler, S.P., 2007, Uncertainties associated with digital elevation models for hydrologic applications: a review, Hydrology and Earth System Sciences, 11(4), 1481-1500.
  •  
  • 28. Zizioli, D., Meisina, C., Valentino, R., and Montrasio, L., 2013, Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese.
  •  
  • 29. Northern Italy, Natural Hazards and Earth System Sciences, 13(3), 559-573.
  •  
  • 30. Environmental Geographic Information, https://egis.me.go.kr [accessed 21.11.30]
  •  
  • 31. KMA Climate information portal, http://www.climate.go.kr/home/CCS/contents_new/Definition.html [accessed 21.11.30]
  •  
  • 32. KMA Weather Data Service, https://data.kma.go.kr/stcs/grnd/grndTaList.do?pgmNo=70 [accessed 21.11.30]
  •  
  • 33. Korean Soil Information System, https://soil.rda.go.kr [accessed 21.11.30]
  •  
  • 34. Korean statistical information service, https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1311 [accessed 21.11.30]
  •  

This Article

  • 2021; 26(6): 106-117

    Published on Dec 31, 2021

  • 10.7857/JSGE.2021.26.6.106
  • Received on Dec 1, 2021
  • Revised on Dec 2, 2021
  • Accepted on Dec 14, 2021

Correspondence to

  • Kim Minseok
  • Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources

  • E-mail: minseok_kim@kigam.re.kr