• In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles
  • Hyeonmin LEE1·Jihyeun JUNG1·Yongju CHOI1*

  • 1Department of Civil and Environmental Engineering, Seoul National University

  • 활성탄 주입을 통한 퇴적물 내 소수성 유기오염물질 원위치 안정화 기술: 작동 원리
  • 이현민1·정지현1·최용주1*

  • 1서울대학교 건설환경공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. 정재윤, 장윤영, 2020, 농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구, 환경영향평가, 29(3), 157-181.
  •  
  • 2. Abel, S. and Akkanen, J., 2019, Novel, activated carbon-based material for in-situ remediation of contaminated sediments, Environ. Sci. Technol., 53(6), 3217-3224.
  •  
  • 3. Accardi-Dey, A. and Gschwend, P.M., 2002, Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments, Environ. Sci. Technol., 36(1), 21-29.
  •  
  • 4. Ahn, S., Werner, D., and Luthy, R.G., 2005, Physicochemical characterization of coke‐plant soil for the assessment of polycyclic aromatic hydrocarbon availability and the feasibility of phytoremediation, Environ. Toxicol. Chem., 24(9), 2185-2195.
  •  
  • 5. American Society for Testing and Materials, 2005, ASTM D5158-98 Standard Test Method for Determination of Particle Size of Powdered Activated Carbon by Air Jet Sieving, American Society for Testing and Materials, West Conshohocken, PA, USA.
  •  
  • 6. American Society for Testing and Materials, 2010, ASTM D 2862-10 Standard Test Method for Particle Size Distribution of Granular Activated Carbon, American Society for Testing and Materials, West Conshohocken, PA, USA.
  •  
  • 7. Bailon, M.X., David, A.S., Park, Y., Kim, E., and Hong, Y., 2018, Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea, Environ. Monit. Assess., 190(274).
  •  
  • 8. Beckingham, B. and Ghosh, U., 2011, Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments, Environ. Sci. Technol., 45(24), 10567-10574.
  •  
  • 9. Beckingham, B. and Ghosh, U., 2013, Polyoxymethylene passive samplers to monitor changes in bioavailability and flux of PCBs after activated carbon amendment to sediment in the field, Chemosphere, 91(10), 1401-1407.
  •  
  • 10. Bianco, F., Race, M., Papirio, S., Oleszczuk, P., and Esposito, G., 2021, The addition of biochar as a sustainable strategy for the remediation of PAH–contaminated sediments, Chemosphere, 263, 128274.
  •  
  • 11. Brändli, R.C., Hartnik, T., Henriksen, T., and Cornelissen, G., 2008, Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil, Chemosphere, 73(11), 1805-1810.
  •  
  • 12. Chiou, C.T., Peters, L.J., and Freed, V.H., 1979, A physical concept of soil-water equilibria for nonionic organic compounds, Science, 206(4420), 831-832.
  •  
  • 13. Cho, Y.M., Smithenry, D.W., Ghosh, U., Kennedy, A.J., Millward, R.N., Bridges, T.S., and Luthy, R.G., 2007, Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness, Mar. Environ. Res., 64(5), 541-555.
  •  
  • 14. Cho, Y.M., Ghosh, U., Kennedy, A.J., Grossman, A., Ray, G., Tomaszewski, J.E., Smithenry, D.W., Bridges, T.S., and Luthy, R.G., 2009, Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment, Environ. Sci. Technol., 43(10), 3815-3823.
  •  
  • 15. Choi, Y., Cho, Y.M., Gala, W.R., and Luthy, R.G., 2013, Measurement and modeling of activated carbon performance for the sequestration of parent-and alkylated-polycyclic aromatic hydrocarbons in petroleum-impacted sediments, Environ. Sci. Technol., 47(2), 1024-1032.
  •  
  • 16. Choi, Y., Cho, Y.M., Werner, D., and Luthy, R.G., 2014, In situ sequestration of hydrophobic organic contaminants in sediments under stagnant contact with activated carbon. 2. Mass transfer modeling, Environ. Sci. Technol., 48(3), 1843-1850.
  •  
  • 17. Choi, Y., Thompson, J.M., Lin, D., Cho, Y.M., Ismail, N.S., Hsieh, C.H., and Luthy, R.G., 2016a, Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants, J. Hazard. Mater., 304, 352-359.
  •  
  • 18. Choi, Y., Cho, Y.M., Gala, W.R., Hoelen, T.P., Werner, D., and Luthy, R.G., 2016b, Decision-making framework for the application of in-situ activated carbon amendment to sediment, J. Hazard. Mater., 306, 184-192.
  •  
  • 19. Choi, Y., Cho, Y.M., Luthy, R.G., and Werner, D., 2016c, Predicted effectiveness of in-situ activated carbon amendment for field sediment sites with variable site-and compound-specific characteristics, J. Hazard. Mater., 301, 424-432.
  •  
  • 20. Cornelissen, G., Breedveld, G.D., Naes, K., Oen, A. M.P., and Ruus A., 2006, Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod: Freely dissolved concentrations and activated carbon amendment, Environ. Toxicol. Chem., 25(9), 2349-2355.
  •  
  • 21. Cornelissen, G., Elmquist Krusa, M., Breedveld, G.D., Eek, E., Oen, A.M.P., Arp, H.P.H., Raymond, C., Samuelsson, G., Hedman, J.E., Stokland, ¨ª., and Gunnarsson, J.S., 2011, Remediation of contaminated marine sediment using thin-layer capping with activated carbon-A field experiment in Trondheim Harbor, Norway, Environ. Sci. Technol., 45(14), 6110-6116.
  •  
  • 22. Cornelissen, G., Amstaetter, K., Hauge, A., Schaanning, M., Beylich, B., Gunnarsson, J.S., Breedceld, G.D., Oen, A.M.P., and Eek, E., 2012, Large-scale field study on thin-layer capping of marine PCDD/F-contaminated sediments in Grenlandfjords, Norway: Physicochemical effects, Environ. Sci. Technol., 46(21), 12030-12037.
  •  
  • 23. Di Toro, D.M., Zarba, C.S., Hansen, D.J., Berry, W.J., Swartz, R.C., Cowan, C.E., Pavlou, S.P., Allen, G.E, Thomas, N.A., and Paquin, P.R., 1991, Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning, Environ. Toxicol. Chem., 10(12), 1541-1583.
  •  
  • 24. Fan, D., Gilbert, E.J., and Fox, T., 2017, Current state of in situ subsurface remediation by activated carbon-based amendments, J. Environ. Manage., 204(2), 793-803.
  •  
  • 25. Ghosh, U., Luthy, R.G., Cornelissen, G., Werner, D., and Menzie, C.A., 2011, In-situ sorbent amendments: A new direction in contaminated sediment management, Environ. Sci. Technol., 45(4), 1163-1168.
  •  
  • 26. Ghosh, U., Zimmerman, J.R., and Luthy, R.G., 2003, PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability, Environ. Sci. Technol., 37(10), 2209-2217.
  •  
  • 27. Ghosh, U., Kane Driscoll, S., Burgess, R.M., Jonker, M.T., Reible, D., Gobas, F., Choi, Y, Apits, S.E., Maruya, K.A., Gala, W.R., Mortimer, M., and Beegan, C., 2014, Passive sampling methods for contaminated sediments: Practical guidance for selection, calibration, and implementation, Integr. Environ. Assess. Manag., 10(2), 210-223.
  •  
  • 28. Hale, S.E. and Werner, D., 2010, Modeling the mass transfer of hydrophobic organic pollutants in briefly and continuously mixed sediment after amendment with activated carbon, Environ. Sci. Technol., 44(9), 3381-3387.
  •  
  • 29. Hawthorne, S.B., Grabanski, C.B., and Miller, D.J., 2006, Measured partitioning coefficients for parent and alkyl polycyclic aromatic hydrocarbons in 114 historically contaminated sediments: Part 1. Koc values., Environ. Toxicol. Chem., 25(11), 2901-2911.
  •  
  • 30. Heijden, S.A.V.D. and Jonker, M.T., 2009, PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation, Environ. Sci. Technol., 43(10), 3757-3763.
  •  
  • 31. Hong, L. and Luthy, R.G., 2007, Availability of polycyclic aromatic hydrocarbons from lampblack-impacted soils at former oil-gas plant sites in California, USA, Environ. Toxicol. Chem., 26(3), 394-405.
  •  
  • 32. Janssen, E.M.L., Croteau, M.N., Luoma, S.N., and Luthy, R.G., 2010, Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete Neanthes arenaceodentata and response to sorbent amendment, Environ. Sci. Technol., 44(8), 2857-2863.
  •  
  • 33. Janssen, E.M.L., Choi, Y., and Luthy, R.G., 2012, Assessment of nontoxic, secondary effects of sorbent amendment to sediments on the deposit-feeding organism Neanthes arenaceodentata, Environ. Sci. Technol., 46(7), 4134-4141.
  •  
  • 34. Janssen, E.M.L. and Beckingham, B.A., 2013, Biological responses to activated carbon amendments in sediment remediation, Environ. Sci. Technol., 47(14), 7595-7607.
  •  
  • 35. Jonker, M.T.O., Hoenderboom, A.M., and Koelmans, A.A., 2004, Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls, Environ. Toxicol. Chem., 23(11), 2563-2570.
  •  
  • 36. Jonker, M.T.O., Suijkerbuijk, M.P., Schmitt, H., and Sinnige, T.L., 2009, Ecotoxicological effects of activated carbon addition to sediments, Environ. Sci. Technol., 43(15), 5959-5966
  •  
  • 37. Jonker, M.T.O. and Smedes, F., 2000, Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, the Netherlands, Environ. Sci. Technol., 34(9), 1620-1626.
  •  
  • 38. Karanfil, T. and Kilduff, J.E., 1999, Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants, Environ. Sci. Technol., 33(18), 3217-3224.
  •  
  • 39. Karickhoff, S.W., Brown, D.S., and Scott, T.A., 1979, Sorption of hydrophobic pollutants on natural sediments, Water. Res., 13(3), 241-248.
  •  
  • 40. Kraaij, R., Mayer, P., Busser, F.J.M., van het Bolscher, M., Seinen, W., Tolls, J., and Belfroid, A.C., 2003, Measured pore-water concentrations make equilibrium partitioning work – A data analysis, Environ. Sci. Technol., 37(2), 268-274.
  •  
  • 41. Kupryianchyk, D., Noori, A., Rakowska, M.I., Grotenhuis, J.T.C., and Koelmans, A.A., 2013, Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon, Environ. Sci. Technol., 47(10), 5092-5100.
  •  
  • 42. Lamoureux, E.M. and Brownawell, B.J., 1999, Chemical and biological availability of sediment‐sorbed hydrophobic organic contaminants, Environ. Toxicol. Chem., 18(8), 1733-1741.
  •  
  • 43. Marchal, G., Smith, K.E., Rein, A., Winding, A., Trapp, S., and Karlson, U.G., 2013, Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost, Chemosphere, 90(6), 1767-1778.
  •  
  • 44. Liu, H.H., Bao, L.J., and Zeng, E.Y., 2014, Recent advances in the field measurement of the diffusion flux of hydrophobic organic chemicals at the sediment-water interface. Trends Analyt. Chem., 54, 56-64.
  •  
  • 45. Lydy, M.J., Landrum, P.F., Oen, A.M., Allinson, M., Smedes, F., Harwood, A.D., Li, H., and Liu, J., 2014, Passive sampling methods for contaminated sediments: State of the science for organic contaminants, Integr. Environ. Assess. Manag., 10(2), 167-178.
  •  
  • 46. McLeod, P.B., van den Heuvel-Greve, M.J., Allen-King, R.M., Luoma, S.N., and Luthy, R.G., 2004, Effects of particulate carbonaceous matter on the bioavailability of benzo [a] pyrene and 2, 2', 5, 5'-tetrachlorobiphenyl to the clam, Macoma balthica, Environ. Sci. Technol., 38(17), 4549-4556.
  •  
  • 47. McLeod, P.B., van den Heuvel-Greve, M.J., Luoma, S.N., and Luthy, R.G., 2007, Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon, Environ. Toxicol. Chem., 26(5), 980-987.
  •  
  • 48. Menzie, C., Amos, B., Driscoll, S.K., Ghosh, U., and Gilmour, C., 2016, Evaluating the efficacy of a low-impact delivery system for in situ treatment of sediments contaminated with methylmercury and other hydrophobic chemicals, Exponent Alexandria United States.
  •  
  • 49. Mustajärvi, L., Eek, E., Cornelissen, G., Eriksson-Wiklund, A. K., Undeman, E., and Sobek, A., 2017, In situ benthic flow-through chambers to determine sediment-to-water fluxes of legacy hydrophobic organic contaminants, Environ. Pollut., 231, 854-862.
  •  
  • 50. Patmont, C.R., Ghosh, U., LaRosa, P., Menzie, C. A., Luthy, R.G., Greenberg, M.S., Cornelissen, G. Eek, E., Collins, J., Hull, J., Hjartland, T., Glaza, E., Bleiler, J., and Quadrini, J., 2015, In situ sediment treatment using activated carbon: a demonstrated sediment cleanup technology, Integr. Environ. Assess. Manag., 11(2), 195-207.
  •  
  • 51. Patmont, E., Jalalizadeh, M., Bokare, M., Needham, T., Vance, J., Greene, R., Cargil, J., and Ghosh, U., 2020, Full-Scale Application of Activated Carbon to Reduce Pollutant Bioavailability in a 5-Acre Lake, J. Environ. Eng., 146(5), 04020024.
  •  
  • 52. Rakowska, M.I., Kupryianchyk, D., Harmsen, J., Grotenhuis, T., and Koelmans, A.A., 2012, In situ remediation of contaminated sediments using carbonaceous materials, Environ. Toxicol, Chem., 31(4), 693-704.
  •  
  • 53. Sanders, J.P., Andrade, N.A., Menzie, C.A., Amos, C.B., Gilmour, C.C., Henry, E.A., Brown, S.S., and Ghosh, U., 2018, Persistent reductions in the bioavailability of PCBs at a tidally inundated Phragmites australis marsh amended with activated carbon., Environ. Toxicol. Chem., 37(9), 2496-2505.
  •  
  • 54. Schwarzenbach, R.P. and Westall, J., 1981, Transport of nonpolar organic compounds from surface water to groundwater: Laboratory sorption studies, Environ. Sci. Technol., 15(11), 1360-1367.
  •  
  • 55. Swoboda, A.R. and Thomas, G.W., 1968, Movement of parathion in soil columns, J. Agric. Food Chem., 16(6), 923-927.
  •  
  • 56. U.S. EPA, 2003, Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures, EPA 600/R-02/013, Washington, DC, USA.
  •  
  • 57. U.S. EPA, 2005, Contaminated sediment remediation guidance for hazardous waste sites, EPA-540-R-05-012, Washington, DC, USA.
  •  
  • 58. U.S. EPA, 2008, Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Compendium of Tier 2 values for nonionic organics, EPA 600/R-02/016, Washington, DC, USA.
  •  
  • 59. U.S. EPA, 2013, Use of amendments for in situ remediation at Superfund sediment sites, EPA OSWER Directive 9200.2-128FS, Washington, DC, USA.
  •  
  • 60. Werner, D., Ghosh, U., and Luthy, R.G., 2006, Modeling polychlorinated biphenyl mass transfer after amendment of contaminated sediment with activated carbon, Environ. Sci. Technol., 40(13), 4211-4218.
  •  
  • 61. Wikström, J., Bonaglia, S., Rämö, R., Renman, G., Walve, J., Hedberg, J., and Gunnarsson, J.S., 2021, Sediment remediation with new composite sorbent amendments to sequester phosphorus, organic contaminants, and metals, Environ. Sci. Technol., 55(17), 11937-11947.
  •  
  • 62. Zimmerman, J.R., Ghosh, U., Millward, R.N., Bridges, T.S., and Luthy, R.G., 2004, Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: Physicochemical tests, Environ. Sci. Technol., 38(20), 5458-5464.
  •  
  • 63. Zimmerman, J.R., Werner, D., Ghosh, U., Millward, R.N., Bridges, T.S., and Luthy, R.G., 2005, Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments, Environ. Toxicol. Chem., 24(7), 1594-1601.
  •  
  • 64. Zimmerman, J.R., Bricker, J.D., Jones, C., Dacunto, P.J., Street, R.L., and Luthy, R.G., 2008, The stability of marine sediments at a tidal basin in San Francisco Bay amended with activated carbon for sequestration of organic contaminants, Water Res., 42(15), 4133-4145.
  •  

This Article

  • 2022; 27(1): 1-16

    Published on Feb 28, 2022

  • 10.7857/JSGE.2022.27.1.001
  • Received on Jan 26, 2022
  • Revised on Feb 1, 2022
  • Accepted on Feb 23, 2022

Correspondence to

  • Yongju CHOI
  • 1Department of Civil and Environmental Engineering, Seoul National University

  • E-mail: ychoi81@snu.ac.kr