• Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation
  • Jang Hee-Jin1·Gihoon Kwon1·Kwangsuk Yoon·Hocheol Song1*

  • 1Department of Environment and Energy, Sejong University, Seoul 05006, South Korea

  • 녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거
  • 장희진1·권기훈1·윤광석1·송호철1*

  • 1세종대학교 환경에너지융합학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ahmad, A., Khan, N., Giri, B.S., Chowdhary, P., and Chaturvedi, P., 2020, Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies, Bioresour. Technol., 306, 123202.
  •  
  • 2. Chen, C., Ma, X., and He, Y., 2012, Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA, Bioresour. Technol., 117, 264-273.
  •  
  • 3. Cho, D.-W., Kwon, G., Ok, Y.S., Kwon, E.E., and Song, H., 2017, Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO2 as a Reaction Medium, ACS Appl. Mater. Interfaces, 9(15), 13142-13150.
  •  
  • 4. Cho, D.-W., Lee, J., Yoon, K., Ok, Y.S., Kwon, E.E., and Song, H., 2016, Pyrolysis of FeCl3-pretreated spent coffee grounds using CO2 as a reaction medium, Energy Conv. Manag., 127, 437-442.
  •  
  • 5. Déparrois, N., Singh, P., Burra, K.G., and Gupta, A.K., 2019, Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2, Appl. Energy, 246, 1-10.
  •  
  • 6. Garrido-Cardenas, J.A., Esteban-García, B., Agüera, A., Sánchez-Pérez, J.A., and Manzano-Agugliaro, F., 2020, Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends, Int. J. Environ. Res. Public Health, 17(1), 170.
  •  
  • 7. Khalfaoui, M., Knani, S., Hachicha, M.A., and Lamine, A.B., 2003, New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment, J. Colloid Interface Sci., 263(2), 350-356.
  •  
  • 8. Kwon, D., Lee, S.S., Jung, S., Park, Y.-K., Tsang, Y.F., and Kwon, E.E., 2020a, CO2 to fuel via pyrolysis of banana peel, Chem. Eng. J., 392, 123774.
  •  
  • 9. Kwon, G., Bhatnagar, A., Wang, H., Kwon, E.E., and Song, H., 2020b, A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar, J. Hazard. Mater., 400, 123242.
  •  
  • 10. Kwon, G., Cho, D.-W., Wang, H., Bhatnagar, A., and Song, H., 2020c, Valorization of plastics and paper mill sludge into carbon composite and its catalytic performance for acarbon material consisted of the multi-layerzo dye oxidation, J. Hazard. Mater., 398, 123173.
  •  
  • 11. Kwon, G., Cho, D.-W., Yoon, K., and Song, H., 2021, Valorization of plastics and goethite into iron-carbon composite as persulfate activator for amaranth oxidation, Chem. Eng. J., 407, 127188.
  •  
  • 12. Lahijani, P., Zainal, Z.A., Mohammadi, M., and Mohamed, A.R., 2015, Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review, Renew. Sust. Energ. Rev., 41, 615-632.
  •  
  • 13. Li, B., Wang, Y.-F., Zhang, L., and Xu, H.-Y., 2022, Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review, Chemosphere, 291(2), 132954.
  •  
  • 14. López-Vinent, N., Cruz-Alcalde, A., Gutiérrez, C., Marco, P., Giménez, J., and Esplugas, S., 2020, Micropollutant removal in real WW by photo-Fenton (circumneutral and acid pH) with BLB and LED lamps, Chem. Eng. J., 379, 122416.
  •  
  • 15. Marghaki, N.S., Jonoush, Z.A., and Rezaee, A., 2020, Improving the performance of Cr (VI) removal by electrochemical process using microbial cellulose/magnetic nanoparticles electrode, J. Clean Prod., 277, 123195.
  •  
  • 16. Pi, Z., Li, X., Wang, D., Xu, Q., Tao, Z., Huang, X., Yao, F., Wu, Y., He, L., and Yang, Q., 2019, Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: Performance and degradation pathway, J. Clean Prod., 235, 1103-1115.
  •  
  • 17. Pu, M., Niu, J., Brusseau, M.L., Sun, Y., Zhou, C., Deng, S., and Wan, J., 2020, Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole, Chem. Eng. J., 394, 125044.
  •  
  • 18. Raza, W., Lee, J., Raza, N., Luo, Y., Kim, K.-H., and Yang, J., 2019, Removal of phenolic compounds from industrial waste water based on membrane-based technologies, J. Ind. Eng. Chem., 71, 1-18.
  •  
  • 19. Sahoo, R.K., Manna, A.K., Das, A., Mitra, A., Mohapatra, M., Nath Sarangi, S., Garg, P., Deshpande, U., and Varma, S., 2022, Facile synthesis of Super-paramagnetic Au @¥á-Fe2O3 hybrid nanoparticle and its assembly on graphene substrate for visible light Photo-catalysis, Appl. Surf. Sci., 151954.
  •  
  • 20. Saxena, R., Saxena, M., and Lochab, A., 2020, Recent Progress in Nanomaterials for Adsorptive Removal of Organic Contaminants from Wastewater, ChemistrySelect, 5(1), 335-353.
  •  
  • 21. Sun, H., Guo, F., Pan, J., Huang, W., Wang, K., and Shi, W., 2021, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J., 406, 126844.
  •  
  • 22. Tan, Z., Yuan, S., Hong, M., Zhang, L., and Huang, Q., 2020, Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd, J. Hazard. Mater., 384, 121370.
  •  
  • 23. Wang, M. and Liu, X., 2021, Applications of red mud as an environmental remediation material: A review, J. Hazard. Mater., 408, 124420.
  •  
  • 24. Wang, Z., Shao, Y., Gao, N., and An, N., 2018, Degradation kinetic of dibutyl phthalate (DBP) by sulfate radical- and hydroxyl radical-based advanced oxidation process in UV/persulfate system, Sep. Purif. Technol., 195, 92-100.
  •  
  • 25. Wen, T., Wang, J., Yu, S., Chen, Z., Hayat, T., and Wang, X., 2017, Magnetic Porous Carbonaceous Material Produced from Tea Waste for Efficient Removal of As(V), Cr(VI), Humic Acid, and Dyes, ACS Sustain. Chem. Eng., 5(5), 4371-4380.
  •  
  • 26. Wu, W., Zhu, S., Huang, X., Wei, W., and Ni, B.-J., 2021, Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions, J. Hazard. Mater., 408, 124454.
  •  
  • 27. Xiong, Z., Jiang, Y., Wu, Z., Yao, G., and Lai, B., 2021, Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review, Chem. Eng. J., 421(2), 127863.
  •  
  • 28. Yu, J., Tang, L., Pang, Y., Zeng, G., Wang, J., Deng, Y., Liu, Y., Feng, H., Chen, S., and Ren, X., 2019, Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism, Chem. Eng. J., 364, 146-159.
  •  
  • 29. Zhao, G., Zou, J., Chen, X., Liu, L., Wang, Y., Zhou, S., Long, X., Yu, J., and Jiao, F., 2021, Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring, Chem. Eng. J., 421(2), 127845.
  •  
  • 30. Zheng, X., Niu, X., Zhang, D., Lv, M., Ye, X., Ma, J., Lin, Z., and Fu, M., 2022, Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review, Chem. Eng. J., 429, 132323.
  •  

This Article

  • 2022; 27(1): 31-38

    Published on Feb 28, 2022

  • 10.7857/JSGE.2022.27.1.031
  • Received on Dec 1, 2021
  • Revised on Dec 6, 2021
  • Accepted on Feb 17, 2022

Correspondence to

  • Hocheol Song
  • Department of Environment and Energy, Sejong University, Seoul 05006, South Korea

  • E-mail: hcsong@sejong.ac.kr