• A Comparative Study on the Storm Hydrograph Separation Methods for Baseflow through Field Applications
  • SungHyen Cho1*·Sang-Ho Moon2*

  • 1National Instrumentation Center for Evironmental Management, Seoul National University, Seoul 08826, Korea
    2Climate Change Response Division, Keorea Institute of Geoscience and Mineral Resources (KIGAM), Deajeon

  • 수문곡선의 기저유출분리 방법에 대한 고찰
  • 조성현1*·문상호2*

  • 1서울대학교 농생명과학공동기기원
    2한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Barnes, B.S., 1939, The structure of discharge-recession curves, Trans. AGU, 20(4), 721-725.
  •  
  • 2. Bottomley, D.J., Craig, D., and Johnston, L.M., 1984, Neutralization of acid runoff by groundwater discharge to streams in Canadian Precambrian Shield watersheds, J. Hydrol., 75(1-4), 1-26.
  •  
  • 3. Bottomley, D.J., Craig, D., and Johnston, L.M., 1986, Oxygen-18 studies of snowmelt runoff in a small Precambrian Shield watershed: Implications for streamwater acidification in acid-sensitive terrain, J. Hydrol., 88(3-4), 213-234.
  •  
  • 4. Cho, S.H., Cho, M.J., Moon, S.-H., Kim, Y.S., and Lee, K.-S., 2008, Estimation of groundwater recharge in a district-scale area using 18O tracer, J. Geol. Soc. Korea, 43(3), 331-340.
  •  
  • 5. Cho, S.H., Ha, K., Kim, T., Cheon, S., and Song, M.Y., 2007, Hydrograph separation for two consecutive rainfall events using tracers(18O & Cl), J. Geol. Soc. Korea, 43(2), 253-263.
  •  
  • 6. Cho, S.H., Moon, S.H., Kho, D.C., Cho, M., and Song, M.Y., 2005, Hydrograph separation using a chemical tracer(Cl) and estimation of baseflow rate in two small catchments, Yuseong, Daejeon, J. Geol. Soc. Korea, 41(3), 427-436.
  •  
  • 7. Cho, S.H., Moon, S.-H., Lee, K.-S., and Kim, S.C., 2003, Hydrograph separation using 18O tracer in a small catchments, Cheongdo, J. Geol. Soc. Korea, 39(4), 509-518.
  •  
  • 8. Eshleman, K.N., Pollard, J.S., and O'brien, A.K., 1993, Determination of contributing areas for saturation overland flow from chemical hydrograph separations, Water Resources Res., 29(10), 3577-3587.
  •  
  • 9. Fetter, C.W., 1994, Applied hydrogeology, 3rd Edition, Prentice-Hall, Inc. New Jersey, 691 p.
  •  
  • 10. Hinton, M. J., Schiff, S.L., and English, M.C., 1994, Examining the contributions of glacial till water to storm runoff using two-and three-component hydrograph separations, Water Resources Res., 30(4), 983-993.
  •  
  • 11. Hooper, R.P. and Shoemaker, C.A., 1986, A comparison of chemical and isotopic hydrograph separation, Water Resources Res., 22(10), 1444-1454.
  •  
  • 12. Horton, R.E., 1933, The role of infiltration in the hydrologic cycle, Trans. AGU, 14(1), 446-460.
  •  
  • 13. Kendall, C. and McDonnell, J.J., 2000, Isotope tracers in catchment hydrology, 2nd impression, Elsevier, Netherlands. 839 p.
  •  
  • 14. Kim, G.-S. and Jo, K.-T., 2000a, A study on the estimation of base flow using baseflow separation in the Daechung Dam Basin, J. Korean Soc. Groundwater Environ., 7(1), 15-19.
  •  
  • 15. Kim, G.-S. and Jo, K.-T., 2000b, A study on the base flow recession curve development in the Ssangchi Basin of the Sumjin River, J. Korean Soc. Groundwater Environ., 7(2), 66-72.
  •  
  • 16. Lanbein, W.B., 1938, Some channel-storage studies and their application to the determination of infiltration, Trans. AGU, 19(1), 435-447.
  •  
  • 17. Lee, E.S. and Krothe, N.C., 2001, A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers, Chem. Geol., 179(1-4), 129-143.
  •  
  • 18. Lee, D.R. and Yoon, Y.N., 1996, Estimation and analysis of groundwater Recharge in Korea, KSCE Journal of Civil and Environmental Engineering Research, 16(II-4), 321-334.
  •  
  • 19. Lee, J.S., 2007, Hydrology, 2nd impression, Kumiseokwan, Seoul, Korea. 725 p.
  •  
  • 20. Lee, K.-S., Park, Y., Kim, Y., Jeong, J.-H., Park, S.-K., Shin, H.-S., and Bong, Y.-S., 2006, A preliminary hydrograph separation study in a small forested watershed using natural tracers, J. Geol. Soc. Korea, 42(3), 427-437.
  •  
  • 21. McDonnell, J.J., Stewart, M.K., and Owens, I.F., 1991, Effect of catchment-scale subsurface mixing on stream isotopic response, Water Resources Res., 27(12), 3065-3073.
  •  
  • 22. MOCT (Ministry of Construction and Transportation), K-Water (Korea Water Resources Corporation), and KIGAM (Korea Institute of Geoscience and Mineral Resources), 2007, Basic Survery of Groundwater in Boeun area.
  •  
  • 23. MOLIT (Minstry of Land, Infrastructure and Transport) and K-Water (Korea Water Resources Corporation), 1995, Groundwater Management Investigation Report; Groundwater Resource Basic Investigation (3rd), IPD-95-5a.
  •  
  • 24. Moore, R.D., 1989, Tracing runoff sources with deuterium and oxygen-18 during spring melt in a headwater catchment, Southern Laurentians, Quebec, J. Hydrol., 112(1-2), 135-148.
  •  
  • 25. Park, C.-G., 1996, Estimation of the available amount of groundwater in South Korea: 1. Development of the method, J. Korean Soc. Groundwater Environ., 3(1), 15-20.
  •  
  • 26. Park, J.-S., Kim, K.-H., Jeon, M.-W., and Kim, J.-S., 1999, Estimation methods of groundwater recharge rate in small basin, J. Korean Soc. Groundwater Environ., 6(2), 76-86.
  •  
  • 27. Pinder, G.F. and Jones, J.F., 1969, Determination of the ground-water component of peak discharge from the chemistry of total runoff, Water Resources Res., 5(2), 438-445.
  •  
  • 28. Singh, V.P., 1969, Theoretical baseflow curves, J. Hydraulics Div., ASCE, 95(HY6), 2079-2048.
  •  
  • 29. Sklash, M.G. and Farvolden, R.N., 1979, The role of groundwater in storm runoff, J. Hydrol., 43(1-4), 45-65.
  •  
  • 30. Sklash, M.G., Stewart, M.K., and Pearce, A.J., 1986, Storm runoff generation in humid headwater catchments, 2. A case study of hillslope and low-order stream response, Water Resources Res., 22(8), 1273-1282.
  •  
  • 31. Turner, J.V. and Barnes, C.J., 2000, Modeling of isotope and hydrogeochemical responses in catchment hydrology. In: Kendall C. and McDonnell J.J. (Eds) Isotope tracers in catchment hydrology, Elsevier, Netherlands, Chapter 21, p. 723-760.
  •  
  • 32. Ward, R.C. and Robinson, M., 1990, Principles of hydrology, 3rd Edition., McGraw-Hill, London, 365 p.
  •  
  • 33. Wels, C., Cornett, J., and LaZerte, B., 1991, Hydrograph separation: A comparsion of geochemical and isotopic tracers, J. Hydrol., 122(1-4), 253-274.
  •  
  • 34. Weon, L.-J., Kim, H.-S., Han, C., 2000, Estimation of groundwater development potential by baseflow separation method using hydrographic data of Jindong and Waekwan area in Nakdong River Basin, KoSSGE 2000 Fall Meeting, Seoul Nat¡¯l. Univ., Seoul, p. 157.
  •  
  • 35. Yun, T.H., 2001, Applied Hydrology, 5th impression, Cheongmoogak, Seoul, Korea. 924 p.
  •  

This Article

  • 2022; 27(1): 50-59

    Published on Feb 28, 2022

  • 10.7857/JSGE.2022.27.1.050
  • Received on Jan 7, 2022
  • Revised on Jan 11, 2022
  • Accepted on Feb 21, 2022

Correspondence to

  • SungHyen Cho 1·Sang-Ho Moon 2
  • 1National Instrumentation Center for Evironmental Management, Seoul National University, Seoul 08826, Korea
    2Climate Change Response Division, Keorea Institute of Geoscience and Mineral Resources (KIGAM), Deajeon

  • E-mail: sunghc@snu.ac.kr, msh@kigam.re.kr