• Effect of the Fate Mechanisms of Phenol on the Remediation Efficiency of In-Situ Capping Applied to Sediment Contaminated by Phenol Chemical Spills
  • Aleum Lee1·Yongju Choi1,2*

  • 1Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea
    2Institute of Construction and Environmental Engineering, Seoul 08826, Korea

  • 페놀 화학사고 발생으로 오염된 퇴적물에서 페놀의 거동 기작이 원위치 피복의 정화 효율에 미치는 영향
  • 이아름1·최용주1,2*

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. AECOM, 2016, Final Remedial Design Report, River Mile 13.1 Sediment Study Area, Lower Willamette River, Portland, Oregon.
  •  
  • 2. Agency for Toxic Substances and Disease Registry (ATSDR), 2008, Toxicological profile for Phenol. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
  •  
  • 3. Azhar, W., 2015, Evaluation of Sorbing Amendments for In-situ Remediation of Contaminated Sediments.
  •  
  • 4. Bruce, R.M., Santodonato, J., and Neal, M.W., 1987, Summary review of the health effects associated with phenol, Toxicol Ind Health, 3(4), 535-568.
  •  
  • 5. Chen, X., Feng, L., Zheng, W., Chen, S., Yang, Y., and Xie, S., 2022, Shifts in structure and function of bacterial community in river and fish pond sediments after a phenol spill, Environ. Sci. Pollut. Res., 29, 14987-14998.
  •  
  • 6. Dane, J.H., Topp, C.G., and Campbell, G.S., 2002, Methods of soil analysis, Part 4, Physical Methods, 3rd ed. Soil Science Society of America, Madison, Wis.
  •  
  • 7. Duan, W., Meng, F., Cui, H., Lin, Y., Wang, G., and Wu, J., 2018, Ecotoxicity of phenol and cresols to aquatic organisms: A review, Ecotoxicol. Environ. Saf., 157, 441-456.
  •  
  • 8. Guo, G. and Duan, R., 2021, Simulation and assessment of a water pollution accident caused by phenol leakage, Water Policy, 23(3), 750-764.
  •  
  • 9. Haley, Aldrich, 2014, 100% Remedial Design, Lower South Pond Sediments Adjacent to West Hide Pile, Industri-plex Operable Unit 2 SuperFund Site, Woburn, Massachusetts.
  •  
  • 10. Huang, W., Peng, P., Yu, Z., and Fu, J., 2003, Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments, Appl. Geochemistry, 18(7), 955-972.
  •  
  • 11. Kan, A.T., Fu, G., Hunter, M., Chen, W., Ward, C.H., and Tomson, M.B., 1998, Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions, Environ. Sci. Technol., 32(7), 892-902.
  •  
  • 12. Kim, K., Nam, K., Kang, W., and Choi, Y., 2018, Decision making framework for beneficial use of dredged sediment in the terrestrial environment based on environmental risk assessment and sediment characterization, J. Korean Soc. Environ. Eng., 40, 227-238.
  •  
  • 13. Li, H., Meng, F., Duan, W., Lin, Y., and Zheng, Y., 2019, Biodegradation of phenol in saline or hypersaline environments by bacteria: A review, Ecotoxicol. Environ. Saf., 184, 109658.
  •  
  • 14. Lopes, T.J. and Furlong, E.T., 2001, Occurrence and potential adverse effects of semivolatile organic compounds in streambed sediment, United States, 1992-1995, Environ. Toxicol. Chem., 20(4), 727-737.
  •  
  • 15. Method 604: Phenols, Methods for organic chemical analysis of municipal and industrial wastewater, EPA-821-B-96-005; Office of Research and Development, U.S. Environmental Protection Agency: Washington, DC, 1996.
  •  
  • 16. Murphy, P., Marquette, A., Reible, D., and Lowry, G.V., 2006, Predicting the performance of activated carbon-, coke-, and soil-amended thin layer sediment caps, J. Environ. Eng., 132, 787-794.
  •  
  • 17. Nebra, A., Alcaraz, C., Caiola, N., Muñoz-Camarillo, G., and Ibáñez, C., 2016, Benthic macrofaunal dynamics and environmental stress across a salt wedge Mediterranean estuary, Mar. Environ. Res., 117, 21-31.
  •  
  • 18. Schulze-Makuch, D., 2006, Longitudinal dispersivity data and implications for scaling behavior, Ground Water, 44(2), 139-140.
  •  
  • 19. Shen, X., Lampert, D., Ogle, S., and Reible, D., 2018, A software tool for simulating contaminant transport and remedial effectiveness in sediment environments, Environ. Model. Softw., 109, 104-113.
  •  
  • 20. Shibata, A., Inoue, Y., and Katayama, A., 2006, Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils, Sci. Total Environ., 367(2-3), 979-987.
  •  
  • 21. U.S. EPA, 1988, Determination of effective porosity of soil materials, EPA/600/2-88/045, Washington, DC, USA.
  •  
  • 22. U.S. EPA, 2005, Contaminated sediment remediation guidance for hazardous waste sites, EPA-540-R-05-012, Washington, DC, USA.
  •  
  • 23. 유지선, 정영진. 유해화학물질 유출의 사례 분석, 한국화재소방학회 논문지, 28(6), 90-98 (2014)
  •  
  • 24. 환경부 화학물질안전원, 화학안전정보공유시스템, 검색일자: 2021.09.20.
  •  

This Article

  • 2022; 27(1): 60-70

    Published on Feb 28, 2022

  • 10.7857/JSGE.2022.27.1.060
  • Received on Feb 11, 2022
  • Revised on Feb 17, 2022
  • Accepted on Feb 22, 2022

Correspondence to

  • Yongju Choi
  • 1Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea
    2Institute of Construction and Environmental Engineering, Seoul 08826, Korea

  • E-mail: ychoi81@snu.ac.kr