• Aquifer Characterization Based on Geophysical Methods and Application Analysis on Past Cases
  • Juyeon Jeong1·Bitnarae Kim1·Seo Young Song1·In Seok Joung1·Sung-Ho Song2·Myung Jin Nam1,3*

  • 1Department of Energy and Mineral Resources Engineering, Sejong University, South Korea
    2Korea Rural Community Corporation
    3Department of Energy Resources and Geosystems Engineering, Sejong University, South Korea

  • 물리탐사에 기초한 대수층 특성화 및 적용 사례 분석
  • 정주연1·김빛나래1·송서영1·정인석1·송성호2·남명진1,3*

  • 1세종대학교 에너지자원공학과
    2한국농어촌공사 농어촌연구원
    3세종대학교 지구자원시스템공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abd-Elaty, I., Abd-Elhamid, H.F., and Negm, A.M., 2018, Investigation of Saltwater Intrusion in Coastal Aquifers, Groundw. Nile Delta, 329-353.
  •  
  • 2. Ahmed, A.S., Revil, A., Bolève, A., Steck, B., Vergniault, C., Courivaud, J.R., Jougnot, D., and Abbas, M., 2020, Determination of the permeability of seepage flow paths in dams from self-potential measurements, Eng. Geol., 268, 105514.
  •  
  • 3. Ahmed, S., de Marsily, G., and Talbot, A., 1988, Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity, Groundwater, 26(1), 78-86.
  •  
  • 4. Ahn, S.S., and Park, D.I., 2015, Groundwater Characterization according to Hydraulic Conductivity Input Method, J. Environ. Sci. Int., 24(7), 939-946.
  •  
  • 5. Aizebeokhai, A.P. and Oyeyemi, K.D., 2014, The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging, J. Appl. Geophy., 111, 364-376.
  •  
  • 6. Akhter, G., Ge, Y., Hasan, M., and Shang, Y., 2022, Estimation of Hydrogeological Parameters by Using Pumping, Laboratory Data, Surface Resistivity and Thiessen Technique in Lower Bari Doab (Indus Basin), Pakistan, Appl. Sci., 12(6), 3055.
  •  
  • 7. Alfarrah, N. and Walraevens, K., 2018, Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions, Water, 10(2), 143.
  •  
  • 8. Archie, G.E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans., 146(01), 54-62.
  •  
  • 9. Atekwana, E.A. and Atekwana, E.A., 2010, Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review, Surv. Geophys., 31(2), 247-283.
  •  
  • 10. Bai, L., Huo, Z., Zeng, Z., Liu, H., Tan, J., and Wang, T., 2021, Groundwater flow monitoring using time-lapse electrical resistivity and Self Potential data, J. Appl. Geophy., 193, 104411.
  •  
  • 11. Barlow, P.M. and Reichard, E.G., 2010, Saltwater intrusion in coastal regions of North America, Hydrogeol. J., 18(1), 247-260.
  •  
  • 12. Batte, A.G., Barifaijo, E., Kiberu, J.M., Kawule, W., Muwanga, A., Owor, M., and Kisekulo, J., 2010, Correlation of geoelectric data with aquifer parameters to delineate the groundwater potential of hard rock terrain in Central Uganda, Pure. Appl. Geophys., 167(12), 1549-1559.
  •  
  • 13. Batu, V., 1998, Aquifer Hydraulics: A Comprehensive Guide To Hydrogeologic Data Analysis, John Wiley & Sons, New York.
  •  
  • 14. Bear, J., Cheng, A.H.D., Sorek, S., Ouazar, D., and Herrera, I. (Eds.)., 1999, Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, Kluwer Academic Publisher, Dordrecht, Boston, London.
  •  
  • 15. Bhatt, K., 1993, Uncertainty in wellhead protection area delineation due to uncertainty in aquifer parameter values, J. Hydrol., 149(1-4), 1-8.
  •  
  • 16. bin Azhar, A.S., Latiff, A.H. A., Lim, L.H., and Gӧdeke, S.H., 2019, Groundwater investigation of a coastal aquifer in Brunei Darussalam using seismic refraction, Environ. Earth. Sci., 78(220).
  •  
  • 17. Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., and Slater, L.D., 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water. Resour. Res., 51(6), 3837-3866.
  •  
  • 18. Binley, A., Keery, J., Slater, L., Barrash, W., and Cardiff, M., 2016, The hydrogeologic information in cross-borehole complex conductivity data from an unconsolidated conglomeratic sedimentary aquifer, Geophy., 81(6), E409-E421.
  •  
  • 19. Bocanegra, E., Da Silva, G.C., Custodio, E., Manzano, M., and Montenegro, S., 2010, State of knowledge of coastal aquifer management in South America, Hydrogeol. J., 18(1), 261-267.
  •  
  • 20. Bodin, J., Porel, G., Nauleau, B., and Paquet, D., 2021, Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data, Hydrol. Earth Syst. Sci. Discuss., 1-22.
  •  
  • 21. Börner, F.D., Schopper, J.R., and Weller, A., 1996, Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements1, Geophys. Prospect., 44(4), 583-601.
  •  
  • 22. Briggs, M.A., Lautz, L.K., and McKenzie, J.M., 2012, A comparison of fibre‐optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams, Hydrol. Process., 26(9), 1277-1290.
  •  
  • 23. Buddemeier, R.W., Sawin, R.S., Whittemore, D.O., and Young, D.P., 1995, Salt Contamination of Ground Water in South Central Kansas. Kansas Geological Survey, Public Information Circular# 2.
  •  
  • 24. Busato, L., Boaga, J., Perri, M.T., Majone, B., Bellin, A., and Cassiani, G., 2019, Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: The Vermigliana Creek case study, Sci. Total. Environ., 648, 1105-1120.
  •  
  • 25. Buselli, G., Davis, G.B., Barber, C., Height, M.I., and Howard, S.H.D., 1992, The application of electromagnetic and electrical methods to groundwater problems in urban environments, Explor. Geophys., 23(4), 543-555.
  •  
  • 26. Cardarelli, E., and Di Filippo, G., 2009, Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: a case study in Rho (Milan-Italy), Waste. Manag. Res., 27(6), 595-602.
  •  
  • 27. Castelluccio, M., Agrahari, S., De Simone, G., Pompilj, F., Lucchetti, C., Sengupta, D., Galli, G., Friello, P., Curatolo, P., Giorgi, R., and Tuccimei, P., 2018, Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India, Environ. Sci. Pollut. Res., 25(13), 12515-12527.
  •  
  • 28. Chae, B.G., Lee, D.H, Kim, Hwang, S.H., Kee, W.Y., and Lee, S.G., 2001, Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings, J. Korea Geoenvironmental Soc., 2(1), 37-56.
  •  
  • 29. Chae, G.T., Kim, K., Yun, S.T., Kim, K.H., Kim, S.O., Choi, B.Y., Kim, H.S., and Rhee, C.W., 2004, Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility, Chemosphere, 55(3), 369-378.
  •  
  • 30. Chakma, A., Bhowmik, T., Mallik, S., and Mishra, U., 2022, Application of GIS and Geostatistical Interpolation Method for Groundwater Mapping. In Advanced Modelling and Innovations in Water Resources Engineering, Springer, Singapore.
  •  
  • 31. Chambers, J., Meldrum, P., Gunn, D., Wilkinson, P., Merritt, A., Murphy, W., West, J., Kuras, O., Haslam, E., Hobbs, P., Pennington, C., and Munro, C., 2013, Geophysical-geotechnical sensor networks for landslide monitoring. In Landslide Science and Practice, Springer, Berlin, Heidelberg, 289-294.
  •  
  • 32. Chandra, P.C., 2015, Groundwater geophysics in hard rock, CRC Press, Taylor & Francis Group, Leiden, The Netherlands.
  •  
  • 33. Cho, D.H. and Jee, S.K., 2000, A Pole-pole Electrical Survey for Groundwater, Geophys. and Geophys. Explor., 3(3), 88-93.
  •  
  • 34. Choi, S.H., Kim, H.S., and Kim, J.S., 2008, IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer, J. Eng. Geol., 18(4), 423-431.
  •  
  • 35. Chung, I.-M., Kim, N.W. and Lee, J., 2007, Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed, J. Soil Groundw. Environ., 12(5), p.19-32.
  •  
  • 36. Chung, I.M., Kim, J., Lee, J., and Chang, S.W., 2015, Status of exploitable groundwater estimations in Korea, J. Eng. Geol., 25(3), 403-412.
  •  
  • 37. Cole, K.S. and Cole, R.H., 1942, Dispersion and absorption in dielectrics II. Direct current characteristics, J. Chem. Phys., 10(2), 98-105.
  •  
  • 38. Comte, J.-C., and Banton, O., 2007, Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers, Geophys. Res. Lett., 34, L10402.
  •  
  • 39. Cueto, M., Olona, J., Fernández‐Viejo, G., Pando, L., and López‐Fernández, C., 2018, Karst‐induced sinkhole detection using an integrated geophysical survey: a case study along the Riyadh Metro Line 3 (Saudi Arabia), Near Surf. Geophys., 16(3), 270-281.
  •  
  • 40. Custodio, E., 2010, Coastal aquifers of Europe: an overview, Hydrogeol. J., 18(1), 269-280.
  •  
  • 41. Dai, Z., Keating, E., Gable, C., Levitt, D., Heikoop, J., and Simmons, A., 2010, Stepwise inversion of a groundwater flow model with multi-scale observation data, Hydrogeol J, 18(3), 607-624.
  •  
  • 42. Niwas, S., Tezkan, B., and Israil, M., 2011, Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany, Hydrogeol. J. 19(2), 307-315.
  •  
  • 43. Daily, W., Ramirez, A., Binley, A., and LeBrecque, D., 2004, Electrical resistance tomography, Leading Edge, 23(5), 438-442.
  •  
  • 44. Davis, J.L. and ANNAN, A.P., 1989, Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy 1, Geophys. Prospect., 37(5), 531-551.
  •  
  • 45. Dawoud, M.A. and Raouf, A.R.A., 2009, Groundwater exploration and assessment in rural communities of Yobe State, Northern Nigeria, Water Resour. Manag., 23(3), 581-601.
  •  
  • 46. de Menezes Travassos, J. and Menezes, P.D.T.L., 2004, GPR exploration for groundwater in a crystalline rock terrain, J. Appl. Geophy., 55(3-4), 239-248.
  •  
  • 47. Deiana, R., Cassiani, G., Kemna, A., Villa, A., Bruno, V., and Bagliani, A., 2007, An experiment of non‐invasive characterization of the vadose zone via water injection and cross‐hole time‐lapse geophysical monitoring, Near Surf. Geophys., 5(3), 183-194.
  •  
  • 48. Deline, B., Harris, R., and Tefend, K., 2015, Laboratory Manual for Introductory Geology, University System of Georgia, University Press of North Georgia.
  •  
  • 49. Dickson, N.E.M., Comte, J.C., McKinley, J., and Ofterdinger, U., 2014, Coupling ground and airborne geophysical data with upscaling techniques for regional groundwater modeling of heterogeneous aquifers: Case study of a sedimentary aquifer intruded by volcanic dykes in Northern Ireland, Water. Resour. Res., 50(10), 7984-8001.
  •  
  • 50. Doetsch, J., Ingeman-Nielsen, T., Christiansen, A. V., Fiandaca, G., Auken, E., and Elberling, B., 2015, Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution, Cold Reg. Sci. Technol., 119, 16-28.
  •  
  • 51. Draskovits, P., Hobot, J., Verö, L., and Smith, B., 1990, Induced polarization surveys applied to evaluation of groundwater resources, Pannonian Basin, Hungary. USA. Invest. Geophy., 4, 379-396.
  •  
  • 52. El-Kaliouby, H., and Abdalla, O., 2015. Application of time-domain electromagnetic method in mapping saltwater intrusion of a coastal alluvial aquifer, North Oman. J. Appl. Geophy., 115, 59-64.
  •  
  • 53. Etete, B.I., Noiki, F.R., and Aizebeokhai, A.P., 2017, Estimation of hydraulic parameters from vertical electrical resistivity sounding, J. Inform. Math. Sci., 9(2), 285-296.
  •  
  • 54. Fagerlund, F. and Heinson, G., 2003, Detecting subsurface groundwater flow in fractured rock using self-potential (SP) methods, Environ. Geol., 43(7), 782-794.
  •  
  • 55. Fallon, G.N., Fullagar, P.K., and Sheard, S.N., 1997, Application of geophysics in metalliferous mines, Aust. J. Earth Sci., 44(4), 391-409.
  •  
  • 56. Fitterman, D.V., 2014, Mapping saltwater intrusion in the Biscayne aquifer, Miami-Dade County, Florida using transient electromagnetic sounding, J. Environ. Eng. Geophys., 19(1), 33-43.
  •  
  • 57. Fitts, C.R., 2002, Groundwater science, Academic Press, San Diego, California.
  •  
  • 58. Frind, E.O. and Molson, J.W., 2018, Issues and options in the delineation of well capture zones under uncertainty, Ground Water, 56(3), 366-376.
  •  
  • 59. Fukue, M., Minato, T., Horibe, H., and Taya, N., 1999, The micro-structures of clay given by resistivity measurements, Eng. Geol., 54(1-2), 43-53.
  •  
  • 60. Gloaguen, E., Chouteau, M., Marcotte, D., and Chapuis, R., 2001, Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data, J. Appl. Geophy., 47(2), 135-152.
  •  
  • 61. Göktürkler, G., Balkaya, Ç., Erhan, Z., and Yurdakul, A., 2008, Investigation of a shallow alluvial aquifer using geoelectrical methods: a case from Turkey, Environ. Geol., 54(6), 1283-1290.
  •  
  • 62. González, J.A.M., Comte, J.C., Legchenko, A., Ofterdinger, U., and Healy, D., 2021, Quantification of groundwater storage heterogeneity in weathered/fractured basement rock aquifers using electrical resistivity tomography: Sensitivity and uncertainty associated with petrophysical modelling, J. Hydrol., 593, 125637.
  •  
  • 63. Gopinath, S., Srinivasamoorthy, K., Saravanan, K., and Prakash, R., 2019, Discriminating groundwater salinization processes in coastal aquifers of southeastern India: geophysical, hydrogeochemical and numerical modeling approach. Environment, Development and Sustainability, 21(5), 2443-2458.
  •  
  • 64. Graham, M.T., MacAllister, D.J., Vinogradov, J., Jackson, M.D., and Butler, A.P., 2018, Self‐potential as a predictor of seawater intrusion in coastal groundwater boreholes, Water. Resour. Res., 54(9), 6055-6071.
  •  
  • 65. Griffiths, D.H. and Barker, R.D., 1993, Two-dimensional resistivity imaging and modelling in areas of complex geology, J. Appl. Geophy., 29(3-4), 211-226.
  •  
  • 66. Guevara, H.J.P., Barrientos, J.H., Rodríguez, O.D., Guevara, V.M.P., Cárdenas, O.L., and Torres, M.L.D.G., 2017, Estimation of Hydrological Parameters from Geoelectrical Measurements. In Electrical Resistivity and Conductivity, Intech.
  •  
  • 67. Gunnink, J.L., Pham, H.V., Oude Essink, G.H., and Bierkens, M.F., 2021, The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses, Earth Syst. Sci. Data, 13(7), 3297-3319.
  •  
  • 68. Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Bâali, F., and El Gayar, A., 2018, Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. EuroMediterr, J. Environ. Integr., 3(1), 1-15.
  •  
  • 69. Hamm, S.Y., Cheong, J.Y., Jang, S., Jung, C.Y., and Kim, B.S., 2005, Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island, Korea, J. Hydrol., 310(1-4), 111-121.
  •  
  • 70. Hasan, M., Shang, Y., Akhter, G., and Jin, W., 2018, Geophysical assessment of groundwater potential: a case study from Mian Channu Area, Pakistan, Groundwater, 56(5), 783-796.
  •  
  • 71. Hayley, K., Bentley, L.R., and Gharibi, M., 2009, Time‐lapse electrical resistivity monitoring of salt‐affected soil and groundwater, Water. Resour. Res., 45(7).
  •  
  • 72. Hubbard, S.S., Chen, J., Peterson, J., Majer, E.L., Williams, K.H., Swift, D.J., Mailloux, B., and Rubin, Y., 2001, Hydrogeological characterization of the South Oyster Bacterial Transport Site using geophysical data, Water. Resour. Res., 37(10), 2431-2456.
  •  
  • 73. Hubbard, S.S., Rubin, Y., and Majer, E., 1997, Ground‐penetrating‐radar‐assisted saturation and permeability estimation in bimodal systems, Water. Resour. Res., 33(5), 971-990.
  •  
  • 74. Hyun, Y., 2014, Preliminary Study on Environmental Values of Groundwater Resources in Korea, Korea Environment Institute.
  •  
  • 75. Jeong, J., Park, E., Han, W.S., Kim, K.Y., Oh, J., Ha, K., Yoon, H., and Yun, S.T., 2017, A method of estimating sequential average unsaturated zone travel times from precipitation and water table level time series data, J. Hydrol., 554, 570-581.
  •  
  • 76. Jung, K., Lee, T., Choi, B.G., and Hong, S., 2015, Rainwater harvesting system for contiunous water supply to the regions with high seasonal rainfall variations, Water. Resour. Res., 29(3), 961-972.
  •  
  • 77. Kadri, M. and Nawawi, M.N.M., 2010, Groundwater exploration using 2D resistivity imaging in Pagoh, Johor, Malaysia, In AIP Conference Proceedings, American Institute of Physics.
  •  
  • 78. Kelly, W.E. and Mareš, S. (Eds.), 1993, Applied geophysics in hydrogeological and engineering practice. Elsevier.
  •  
  • 79. Kim, B., Nam, M.J., Jang, H., Jang, H., Son, J. S., and Kim, H.J., 2017, The Principles and Practice of Induced Polarization Method, Geophys. and Geophys. Explor., 20(2), 100-113.
  •  
  • 80. Kim, H.S., 1997, Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method, J. Eng. Geol., 7(2), 139-149.
  •  
  • 81. Kim, J.W., 2013, Characteristics of water level change and hydrogeochemistry of groundwater from national groundwater monitoring network, Korea: geostatistical interpretation and the implications for groundwater management. Ph.D. thesis in Korea University, 173.
  •  
  • 82. Kim, K.H., Yun, S.T., Kim, H.K., and Kim, J.W., 2015. Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. J. Geochem. Explor., 148, 196-205.
  •  
  • 83. Kumar, D., Rajesh, K., Mondal, S., Warsi, T., and Rangarajan, R., 2020, Groundwater exploration in limestone–shale–quartzite terrain through 2D electrical resistivity tomography in Tadipatri, Anantapur district, Andhra Pradesh, J. Earth Syst. Sci., 129(1), 1-16.
  •  
  • 84. Lee, C.S., Kim, H.J., Kong, Y.S., Lee, J.M., and Chang, T.W., 2001, Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey, Geophys. and Geophys. Explor., 4(4), 124-132.
  •  
  • 85. Lee, J.M., Ko, K.S., and Woo, N.C., 2020, Characterization of Groundwater Level and Water Quality by Classification of Aquifer Types in South Korea, Econ. and Environ. Geol., 53(5), 619-629.
  •  
  • 86. Lee, J.Y., 2017, Lessons from three groundwater disputes in Korea: Lack of comprehensive and integrated investigation, Int. J. Water, 11(1), 59-72.
  •  
  • 87. Lee, J.Y. and Kwon, K., 2015, Groundwater resources in Gangwon Province: Tasks and perspectives responding to droughts, J. Geol. Soc. Korea, 51(6), 585-595.
  •  
  • 88. Lee, J.Y., Yi, M.J., Yoo, Y.K., Ahn, K.H., Kim, G.B., and Won, J.H., 2007, A review of the national groundwater monitoring network in Korea, Hydrol. Process.: An International Journal, 21(7), 907-919.
  •  
  • 89. Lee, J.M., Park, J.H., Chung, E. and Woo, N.C., 2018, Assessment of Groundwater Drought in the Mangyeong River Basin, Korea, Sustain., 10(3), 831.
  •  
  • 90. Lee, T.J., Park, N.Y., Choo, S.Y., Lee, J.H., and Koh, S.Y., 2003, Estimation of Two-dimensional Distribution of Coefficient of Permeability from Electrical Logging and AMT Data in Yangsan Area. Geophy. and Geophy. Explor., 6(2), 64-70.
  •  
  • 91. Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A., 2008, Complex conductivity of water-saturated packs of glass beads. J. Colloid Interf. Sci., 321(1), 103-117.
  •  
  • 92. Lesmes, D.P., Decker, S.M., and Roy, D.C., 2002, A multiscale radar-stratigraphic analysis of fluvial aquifer heterogeneity, Geophy., 67(5), 1452-1464.
  •  
  • 93. Levchuk, S., Kashparov, V., Maloshtan, I., Yoschenko, V., and Van Meir, N., 2012, Migration of transuranic elements in groundwater from the near-surface radioactive waste site, Appl. Geochen., 27(7), 1339-1347.
  •  
  • 94. Liu, H., Xie, X., Cui, J., Takahashi, K., and Sato, M., 2014, Groundwater level monitoring for hydraulic characterization of an unconfined aquifer by common mid-point measurements using GPR, J. Environ. Eng. Geophys., 19(4), 259-268.
  •  
  • 95. Madun, A., Tajudin, S.A.A., Sahdan, M.Z., Dan, M.F.M., and Talib, M.K.A., 2018, Electrical resistivity and induced polarization techniques for groundwater exploration, Int. J. Integr. Eng., 10(8).
  •  
  • 96. Massoud, U., Santos, F., Khalil, M.A., Taha, A. and Abbas, A.M., 2010, Estimation of aquifer hydraulic parameters from surface geophysical measurements: a case study of the Upper Cretaceous aquifer, central Sinai, Egypt, Hydrogeol. J., 18, 699-710.
  •  
  • 97. MOE (Ministry of Environment) and K-water, 2019, National Groundwater Monitoring Network in Korea Annual Report 2019, ME and K-water, Daejeon, Korea, 829.
  •  
  • 98. Min, J.H., Yun, S.T., Kim, K., Kim, H.S., and Kim, D.J., 2003, Geologic controls on the chemical behaviour of nitrate in riverside alluvial aquifers, Korea, Hydrol. Process., 17(6), 1197-1211.
  •  
  • 99. Ministry of Environment, 2020, Groundwater business performance guideline, file:///C:/Users/juju/Downloads/환경부_지하수업무수행 지침 (1).pdf
  •  
  • 100. Moghareh Abed, T., Eskandari Torbaghan, M., Hojjati, A., Rogers, C.D., and Chapman, D.N., 2020, Experimental investigation into the effects of cast-iron pipe corrosion on GPR detection performance in clay soils, J. Pipeline Syst. Eng. Pract., 11(4), 04020040.
  •  
  • 101. Mohamaden, M.I. and Ehab, D., 2017, Application of electrical resistivity for groundwater exploration in Wadi Rahaba, Shalateen, Egypt, J. Astron. Geophy., 6(1), 201-209.
  •  
  • 102. Monego, M., Cassiani, G., Deiana, R., Putti, M., Passadore, G., and Altissimo, L., 2010, A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography, Geophy, 75(4), WA61-WA73.
  •  
  • 103. Morgan, L.K., and Werner, A.D., 2015, A national inventory of seawater intrusion vulnerability for Australia, J. Hydrol. Reg. Stud., 4, 686-698.
  •  
  • 104. Nadler, A. and Frenkel, H., 1980, Determination of soil solution electrical conductivity from bulk soil electrical conductivity measurements by the four‐electrode method, Soil Sci. Soc. Am. J., 44(6), 1216-1221.
  •  
  • 105. Nakashima, Y., Zhou, H., and Sato, M., 2001, Estimation of groundwater level by GPR in an area with multiple ambiguous reflections, J. Appl. Geophy., 47(3-4), 241-249.
  •  
  • 106. Naudet, V., Revil, A., Bottero, J. Y., and Bégassat, P., 2003, Relationship between self‐potential (SP) signals and redox conditions in contaminated groundwater, Geophys. Res. Lett., 30(21).
  •  
  • 107. Neal, A., 2004, Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Sci. Rev., 66(3-4), 261-330.
  •  
  • 108. Niwas, S., Tezkan, B., and Israil, M., 2011, Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany, Hydrogeol. J., 19(2), 307-315.
  •  
  • 109. Olorunfemi, M.O. and Fasuyi, S.A., 1993, Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State), J. Afr. Earth Sci. (Middle East), 16(3), 309-317.
  •  
  • 110. Owen R.J., Gwavava O., and Gwaze P., 2005, Multi-electrode resistivity survey for groundwater exploration in the Harare greenstone belt, Zimbabwe, Hydrogeol. J., 14, 244-252.
  •  
  • 111. Panthulu, T.V., Krishnaiah, C., and Shirke, J.M., 2001, Detection of seepage paths in earth dams using self-potential and electrical resistivity methods, Eng. Geol., 59(3-4), 281-295.
  •  
  • 112. Park, K.G., Shin, J.H., Hwang, S.H., and Park, I.H, 2007, Fresh water injection test to mitigate seawater intrusion and geophysical monitoring in coastal area, Geophy. and Geophy. Explor., 10(4), 353-360.
  •  
  • 113. Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R., and Nelson, P.H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophy, 43(3), 588-609.
  •  
  • 114. Porsani, J.L., Elis, V.R., and Hiodo, F.Y., 2005, Geophysical investigations for the characterization of fractured rock aquifers in Itu, SE Brazil, J. Appl. Geophy., 57(2), 119-128.
  •  
  • 115. Rai, S.N., Thiagarajan, S., Kumar, D., Dubey, K. M., Rai, P.K., Ramachandran, A., and Nithya, B., 2013, Electrical resistivity tomography for groundwater exploration in a granitic terrain in NGRI campus, Current Science, 105(10), 1410-1418.
  •  
  • 116. Raiche, A.P., Jupp, D.L.B., Rutter, H., and Vozoff, K., 1985, The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures, Geophysics, 50(10), 1618-1627.
  •  
  • 117. Revil, A., Karaoulis, M., Johnson, T., and Kemna, A., 2012, Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology, Hydrogeol. J., 20(4), 617-658.
  •  
  • 118. Revil, A., Naudet, V., Nouzaret, J., and Pessel, M., 2003, Principles of electrography applied to self‐potential electrokinetic sources and hydrogeological applications, Water. Resour. Res., 39(5).
  •  
  • 119. Reynolds, J.M., 2011, An introduction to applied and environmental geophysics, John Wiley & Sons.
  •  
  • 120. Ritz, M., Descloitres, M., Robineau, B., and Courteaud, M., 1997, Audiomagnetotelluric prospecting for groundwater in the Baril coastal area, Piton de la Fournaise Volcano, Reunion Island, Geophy, 62(3), 758-762.
  •  
  • 121. Rizzo, E., Suski, B., Revil, A., Straface, S., and Troisi, S., 2004, Self‐potential signals associated with pumping tests experiments, J. Geophys. Res. Solid. Earth, 109(B10).
  •  
  • 122. Romanak, K.D., Smyth, R.C., Yang, C., Hovorka, S.D., Rearick, M., and Lu, J., 2012, Sensitivity of groundwater systems to CO2: Application of a site-specific analysis of carbonate monitoring parameters at the SACROC CO2-enhanced oil field, Int. J. Greenh. Gas Con., 6, 142-152.
  •  
  • 123. Saad, R., Nawawi, M.N.M., and Mohamad, E.T., 2012, Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT), J. Geotech. Geoenviron. Eng., 17, 369-376.
  •  
  • 124. Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G., 2005, Electrical resistivity survey in soil science: a review, Soil Tillage Res., 83(2), 173-193.
  •  
  • 125. Sattar, G.S., Keramat, M., and Shahid, S., 2016, Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh, Appl. Water Sci., 6(1), 35-45.
  •  
  • 126. Schmugge, T.J., 1980, Effect of texture on microwave emission from soils: IEEE Transactions on Geoscience and Remote Sensing, GE-18(4), 353-361.
  •  
  • 127. Shainberg, I., Rhoades, J.D., and Prather, R.J., 1980, Effect of exchangeable sodium percentage, cation exchange capacity, and soil solution concentration on soil electrical conductivity, Soil Sci. Soc. Am. J., 44(3), 469-473.
  •  
  • 128. Sharma, S.P., and Baranwal, V.C., 2005, Delineation of groundwater-bearing fracture zones in a hard rock area integrating very low frequency electromagnetic and resistivity data, J. Appl. Geophy., 57(2), 155-166.
  •  
  • 129. Shi, L. and Jiao, J.J., 2014, Seawater intrusion and coastal aquifer management in China: A review, Environ. Earth. Sci., 72(8), 2811-2819.
  •  
  • 130. Shiklomanov, I.A., 1993, World freshwater resources. Water in crisis: a guide to the world¡¯s fresh water resources, Clim. Change, 45, 379-382.
  •  
  • 131. Shin, J.H. and Byun, J.M., 2010, Fresh water injection test in a fractured bedrock aquifer for the mitigation of seawater intrusion, Econ. and Environ. Geol., 43(4), 371-379.
  •  
  • 132. Singh, U., Sharma, P.K., and Ojha, C.S.P., 2019, Groundwater investigation using ground magnetic resonance and resistivity meter, ISH J. Hydraul. Eng., 27(1), 401-410.
  •  
  • 133. Sinha, R., Israil, M., and Singhal, D.C., 2009, A hydrogeophysical model of the relationship between geoelectric and hydraulic parameters of anisotropic aquifers, Hydrogeol. J., 17(495).
  •  
  • 134. Slater, L.D. and Sandberg, S.K., 2000, Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients, Geophy, 65(2), 408-420.
  •  
  • 135. Slater, L. and Binley, A., 2021, Advancing hydrological process understanding from long‐term resistivity monitoring systems, WIREs. Water., 8(3), e1513.
  •  
  • 136. Slater, L. and Lesmes, D.P., 2002, Electrical‐hydraulic relationships observed for unconsolidated sediments, Water. Resour. Res., 38(10), 31-1 - 31-13.
  •  
  • 137. Slater, L., Ntarlagiannis, D., and Wishart, D., 2006, On the relationship between induced polarization and surface area in metal-sand and clay-sand mixtures, Geophy, 71(2), A1-A5.
  •  
  • 138. Song, S.H., Yong, H.H., Kim, J.H., Song, S.Y, and Chung, H.J., 2002, Hydrogeologic structure derived from electrical and CSAMT surveys in the Chojung area, Geophys. and Geophys. Explor., 5(2), 118-125.
  •  
  • 139. Song, S.H. and Yong, H., 2003. Application of SP monitoring to the analysis of anisotropy of aquifer, Econ. Environ. Geol., 36(1), 49-58.
  •  
  • 140. Song, S.Y. and Nam, M.J., 2018, A Technical Review on Principles and Practices of Self-potential Method Based on Streaming Potential, Geophys. and Geophys. Explor., 21(4), 231-243.
  •  
  • 141. Song, Z., Zhou, Q.Y., Lu, D.B., and Xue, S., 2022, Application of Electrical Resistivity Tomography for Investigating the Internal Structure and Estimating the Hydraulic Conductivity of In Situ Single Fractures, Pure. Appl. Geophys., 1-21.
  •  
  • 142. Sonkamble, S., Satishkumar, V., Amarender, B., and Sethurama, S., 2014, Combined ground-penetrating radar (GPR) and electrical resistivity applications exploring groundwater potential zones in granitic terrain, Arab. J. Geosci., 7(8), 3109-3117.
  •  
  • 143. Soupios, P.M., Kouli, M., Vallianatos, F., Vafidis, A., and Stavroulakis, G., 2007, Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete–Greece), J. Hydrol. 338(1-2), 122-131.
  •  
  • 144. Steyl, G. and Dennis, I, 2010, Review of coastal-area aquifers in Africa, Hydrogeol. J., 18(1), 217-225.
  •  
  • 145. Straface, S., Rizzo, E., and Chidichimo, F., 2010, Estimation of hydraulic conductivity and water table map in a large‐scale laboratory model by means of the self‐potential method, J. Geophys. Res. Solid. Earth, 115(B6).
  •  
  • 146. Swileam, G.S., Shahin, R.R., Nasr, H.M., and Essa, K.S., 2019, Spatial variability assessment of Nile alluvial soils using electrical resistivity technique, Eurasian J. Soil Sci., 8(2) 110-117.
  •  
  • 147. Thiagarajan, S., Rai, S.N., Kumar, D., and Manglik, A., 2018, Delineation of groundwater resources using electrical resistivity tomography, Arab. J. Geosci., 11(9), 1-16.
  •  
  • 148. Todd, D.K. and Mays, L.W., 2004, Groundwater hydrology, John Wiley & Sons.
  •  
  • 149. Tronicke, J., Blindow, N., Gross, R., and Lange, M. A., 1999, Joint application of surface electrical resistivity-and GPR-measurements for groundwater exploration on the island of Spiekeroog-northern Germany, J. Hydrol., 223(1-2), 44-53.
  •  
  • 150. Uhlemann, S., Kuras, O., Richards, L.A., Naden, E., and Polya, D.A., 2017, Electrical Resistivity Tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia, J. Asian Earth Sci., 147, 402-414.
  •  
  • 151. Van Dam, J.C., 1976, Possibilities and limitations of the resistivity method of geoelectrical prospecting in the solution of geo-hydrological problems, Geoexploration, 14(3-4), 179-193.
  •  
  • 152. Vogelgesang, J.A., Holt, N., Schilling, K.E., Gannon, M., and Tassier-Surine, S., 2020, Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers, J. Hydrol., 580, 123992.
  •  
  • 153. Vozoff, K., 1972, The magnetotelluric method in the exploration of sedimentary basins, Geophy, 37(1), 98-141.
  •  
  • 154. Wake County Groundwater Assessment: Home, https://www2.usgs.gov/water/southatlantic/nc/projects/wake-county-groundwater/study.php , [accessed 22.03.17]
  •  
  • 155. Water Souce: groundwater, https://www.canada.ca/en/environment-climate-change/services/water-overview/sources/groundwater.html#sub1, [accessed 22.03.17]
  •  
  • 156. Watlet, A., Kaufmann, O., Triantafyllou, A., Poulain, A., Chambers, J.E., Meldrum, P.I., Wilkinson, P.B., Hallet, V., Quinif, Y., Ruymbeke, M.V., and Camp, M.V., 2018, Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring, Hydrol. Earth. Syst. Sci., 22(2), 1563-1592.
  •  
  • 157. Waxman, M.H. and Smits, L.J.M., 1968, Electrical conductivities in oil-bearing shaly sands, Soc. Petrol. Eng. J., 8(02), 107-122.
  •  
  • 158. Weiss, P.T., LeFevre, G., and Gulliver, J.S., 2008, Contamination of soil and groundwater due to stormwater infiltration practices, a literature review.
  •  
  • 159. Weller, A., Slater, L., Binley, A., Nordsiek, S., and Xu, S., 2015, Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range, Geophy, 80(2), D161-D173.
  •  
  • 160. Werner, A.D., Bakker, M., Post, V.E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., and Barry, D.A., 2013, Seawater intrusion processes, investigation and management: recent advances and future challenges, Adv. in water res., 51, 3-26.
  •  
  • 161. West, G.F., Macnae, J.C., and Nabighian, M.N., 1987, Electromagnetic methods in applied geophysics, Vol. 2. Applications.
  •  
  • 162. Won, B., Shin, J., Hwang, S.H., and Hamm, S.Y., 2013, An Electrical Resistivity Survey for the Characterization of Alluvial Layers at Groundwater Artificial Recharge Sites, Geophys. and Geophys. Explor., 16(3), 154-162.
  •  
  • 163. Won, K.S., Chung, S.Y., Lee, C.S., and Jeong, J.H., 2015, Replacement of saline water through injecting fresh water into a confined saline aquifer at the nakdong river delta area, J. Eng. Geol., 25(2), 215-225.
  •  
  • 164. Yao, L., Huo, Z., Feng, S., Mao, X., Kang, S., Chen, J., Xu, J., and Steenhuis, T.S., 2014, Evaluation of spatial interpolation methods for groundwater level in an arid inland oasis, northwest China, Environ. Earth. Sci., 71(4), 1911-1924.
  •  
  • 165. Yu, H., Kim, B., Song, S.Y., Cho, S.O., Caesary, D., and Nam, M.J., 2019, Change in Physical Properties depending on Contaminants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection, Geophys. and Geophys. Explor., 22(3), 132-148.
  •  
  • 166. Yu, X.Q., Zhao, Y.J., Wang, M.X., Liu, D., Wang, W.T., and Wang, X.Z., 2014, Combination of audio magnetotelluric and nuclear magnetic resonance used to aquifer division, J. Jilin University (Earth Science Edition), 44(1), 350-358.
  •  
  • 167. Zhang, J., Chen, K., Huang, H., Zhen, L., Ju, J., and Du, S., 2021, Discussion on monitoring and characterising group drilling pumping test within a massive thickness aquifer using the time-lapse transient electromagnetic method (TEM), B. Geofis. Teor. Appl., 62(1), 119-134.
  •  
  • 168. Zhu, L., Gong, H., Chen, Y., Li, X., Chang, X., and Cui, Y., 2016, Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data, Sci. Rep., 6(1), 1-8.
  •  

This Article

  • 2022; 27(2): 1-23

    Published on Apr 30, 2022

  • 10.7857/JSGE.2022.27.2.001
  • Received on Dec 13, 2021
  • Revised on Dec 18, 2021
  • Accepted on Mar 30, 2022

Correspondence to

  • Myung Jin Nam
  • 1Department of Energy and Mineral Resources Engineering, Sejong University, South Korea
    3Department of Energy Resources and Geosystems Engineering, Sejong University, South Korea

  • E-mail: nmj1203@gmail.com