• Evaluation of the Effects of Carbon Dioxide on the Production of Engineered Biochar
  • Lee Sangyoon1·Lee Taewoo1·Kwon E. Eilhann1*

  • 1Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea

  • 기능성 바이오차 생산을 위한 이산화탄소의 영향 평가
  • 이상윤1·이태우1·권일한1*

  • 1한양대학교 자원환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Albanese, L., Baronti, S., Liguori, F., Meneguzzo, F., Barbaro, P., and Vaccari, F.P., 2019, Hydrodynamic cavitation as an energy efficient process to increase biochar surface area and porosity: A case study, J. Clean. Prod.,210, 159-169.
  •  
  • 2. Babin, A., Vaneeckhaute, C., and Iliuta, M.C., 2021, Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review, Biomass Bioenergy,146, 105968.
  •  
  • 3. Budinis, S., Krevor, S., Dowell, N.M., Brandon, N., and Hawkes, A., 2018, An assessment of CCS costs, barriers and potential, Energy Strategy Rev., 22, 61-81.
  •  
  • 4. Cao, Y., Shen, G., Zhang, Y., Gao, C., Li, Y., Zhang, P., Xiao, W., and Han, L., 2019, Impacts of carbonization temperature on the Pb(II) adsorption by wheat straw-derived biochar and related mechanism, Sci. Total Environ.,692, 479-489.
  •  
  • 5. Creamer, A.E., Gao, B., and Wang, S., 2016, Carbon dioxide capture using various metal oxyhydroxide–biochar composites, Chem. Eng. J.,283, 826-832.
  •  
  • 6. de la Rosa, J.M., Rosado, M., Paneque, M., Miller, A.Z., and Knicker, H., 2018, Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils, Sci. Total Environ.,613-614, 969-976.
  •  
  • 7. Dissanayake, P.D., Choi, S.W., Igalavithana, A.D., Yang, X., Tsang, D.C.W., Wang, C.-H., Kua, H.W., Lee, K.B., and Ok, Y.S., 2020, Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication, Renew. Sust. Energ. Rev.,124, 109785.
  •  
  • 8. Kim, H.-B., Kim, J.-G., Kim, T., Alessi, D.S., and Baek, K., 2020, Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: Relationships between lignin content and dissolved organic matter leaching, Chem. Eng. J.,393, 124687.
  •  
  • 9. Kumaravel, V., Bartlett, J., and Pillai, S.C., 2020, Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products, ACS Energy Lett.,5(2), 486-519.
  •  
  • 10. Kwak, J.-H., Islam, M.S., Wang, S., Messele, S.A., Naeth, M.A., El-Din, M.G., and Chang, S.X., 2019, Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation, Chemosphere,231, 393-404.
  •  
  • 11. Lahijani, P., Mohammadi, M., and Mohamed, A.R., 2018, Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition, J. CO2 Util.,26, 281-293.
  •  
  • 12. Lahijani, P., Zainal, Z.A., Mohammadi, M., and Mohamed, A.R., 2015, Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review, Renew. Sustain. Energy Rev.,41, 615-632.
  •  
  • 13. Lee, D.-J., Kim, M., Jung, S., Park, Y.-K., Jang, Y., Tsang, Y.F., Kim, H., Park, K.-H., and Kwon, E.E., 2022, Direct conversion of yellow mealworm larvae into biodiesel via a non-catalytic transesterification platform, Chem. Eng. J.,427, 131782.
  •  
  • 14. Lee, J., Kim, K.-H., and Kwon, E.E., 2017 Biochar as a Catalyst, Renew. Sust. Energ. Rev.,77, 70-79.
  •  
  • 15. Lee, T., Jung, S., Hong, J., Wang, C.-H., Alessi, D.S., Lee, S.S., Park, Y.-K., and Kwon, E.E., 2020, Using CO2 as an Oxidant in the Catalytic Pyrolysis of Peat Moss from the North Polar Region, Environ. Sci. Technol.,54(10), 6329-6343.
  •  
  • 16. Leng, L. and Huang, H., 2018, An overview of the effect of pyrolysis process parameters on biochar stability, Bioresour. Technol.,270, 627-642.
  •  
  • 17. Leng, L., Huang, H., Li, H., Li, J., and Zhou, W., 2019, Biochar stability assessment methods: A review, Sci. Total Environ.,647, 210-222.
  •  
  • 18. Liu, Y., Gao, C., Wang, Y., He, L., Lu, H., and Yang, S., 2020, Vermiculite modification increases carbon retention and stability of rice straw biochar at different carbonization temperatures, J. Clean. Prod.,254, 120111.
  •  
  • 19. Mai, N.T., Nguyen, M.N., Tsubota, T., Nguyen, P.L.T., and Nguyen, N.H., 2021, Evolution of physico-chemical properties of Dicranopteris linearis-derived activated carbon under various physical activation atmospheres, Sci. Rep.,11(1), 14430.
  •  
  • 20. Manyà, J.J., González, B., Azuara, M., and Arner, G., 2018, Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity, Chem. Eng. J.,345, 631-639.
  •  
  • 21. Mašek, O., Buss, W., Brownsort, P., Rovere, M., Tagliaferro, A., Zhao, L., Cao, X., and Xu, G., 2019, Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement, Sci. Rep.,9(1), 5514.
  •  
  • 22. Muttakin, M., Mitra, S., Thu, K., Ito, K., and Saha, B.B., 2018, Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat and Mass Transf.,122, 795-805.
  •  
  • 23. Oginni, O. and Singh, K., 2020, Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars, J. Environ. Chem. Eng.,8(5), 104169.
  •  
  • 24. Qiao, Y., Zhang, S., Quan, C., Gao, N., Johnston, C., and Wu, C., 2020, One-pot synthesis of digestate-derived biochar for carbon dioxide capture, Fuel,279, 118525.
  •  
  • 25. Ramyashree, M.S., Shanmuga Priya, S., Freudenberg, N. C., Sudhakar, K., and Tahir, M., 2021, Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application, J. CO2 Util., 43, 101374.
  •  
  • 26. Rout, K.R., Gil, M.V., and Chen, D., 2019, Highly selective CO removal by sorption enhanced Boudouard reaction for hydrogen production, Catal.s Sci. Technol.,9(15), 4100-4107.
  •  
  • 27. Saldarriaga, J.F., Aguado, R., Pablos, A., Amutio, M., Olazar, M., and Bilbao, J., 2015, Fast characterization of biomass fuels by thermogravimetric analysis (TGA), Fuel,140, 744-751.
  •  
  • 28. Shahkarami, S., Azargohar, R., Dalai, A.K., and Soltan, J., 2015, Breakthrough CO2 adsorption in bio-based activated carbons, J. Enviorn. Sci.,34, 68-76.
  •  
  • 29. Thakur, I.S., Kumar, M., Varjani, S.J., Wu, Y., Gnansounou, E., and Ravindran, S., 2018, Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges, Bioresour. Technol.,256, 478-490.
  •  
  • 30. Wani, I., Sharma, A., Kushvaha, V., Madhushri, P., and Peng, L., 2020, Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: Towards understanding performance of biochar using simplified approach, J. Hazard. Toxic and Radioact. Waste,24(4), 04020048.
  •  
  • 31. Waters, C.L., Janupala, R.R., Mallinson, R.G., and Lobban, L.L., 2017, Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects, J. Anal. Appl. Pyrolysis,126, 380-389.
  •  
  • 32. Yu, H., Wu, Z., and Chen, G., 2018, Catalytic gasification characteristics of cellulose, hemicellulose and lignin, Renew. Energy,121, 559-567.
  •  

This Article

  • 2022; 27(2): 41-49

    Published on Apr 30, 2022

  • 10.7857/JSGE.2022.27.2.041
  • Received on Dec 2, 2021
  • Revised on Dec 6, 2021
  • Accepted on Dec 10, 2021

Correspondence to

  • Kwon E. Eilhann
  • Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea

  • E-mail: ek2148@hanyang.ac.kr