• Hydrogeochemistry and Microbial Community Structure of Groundwater in an Agricultural Area
  • Dong-Hun Kim1*·Yong Hwa Oh2·Bong-Joo Lee1·Jung-Yun Lee1

  • 1Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
    2Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

  • 농업지역 지하수의 수리지화학 및 미생물 군집 구조 분석
  • 김동훈1*·오용화2·이봉주1·이정윤1

  • 1한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터
    2한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Allende, A. and Monaghan, J., 2015, Irrigation water quality for leafy crops: A perspective of risks and potential solutions, Int. J. Environ. Res. Public Health, 12(7), 7457-7477.
  •  
  • 2. Balkwill, D.L., Fredrickson, J.K., and Romine, M.F., 2006, Sphingomonas and related genera. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (Eds.), The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass. Springer New York, New York, NY, p. 605-629.
  •  
  • 3. Bratanis, E., Andersson, T., Lood, R., and Bukowska-Faniband, E., 2020, Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes, Front. Microbiol., 11(662).
  •  
  • 4. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., 2010, Qiime allows analysis of high-throughput community sequencing data, Nat. Methods, 7(5), 335-336.
  •  
  • 5. Cho, B.-W., Yun, U., Lee, B.-D., and Ko, K.-S., 2012, Hydrogeological characteristics of the wangjeon-ri PCWC area, Nonsan-city, with an emphasis on water level variations, The J. Eng. Geol., 22(2), 195-205.
  •  
  • 6. De Vet, W., Dinkla, I., Abbas, B., Rietveld, L., and Van Loosdrecht, M., 2012, Gallionella spp. in trickling filtration of subsurface aerated and natural groundwater, Biotechnol. Bioeng., 109(4), 904-912.
  •  
  • 7. De Vet, W., Dinkla, I., Rietveld, L., and Van Loosdrecht, M., 2011, Biological iron cxidation by Gallionella spp. in drinking water production under fully aerated conditions, Water Res., 45(17), 5389-5398.
  •  
  • 8. de Voogd, N.J., Cleary, D.F.R., Polónia, A.R.M., and Gomes, N.C.M., 2015, Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia, FEMS Microbiol. Ecol., 91(4).
  •  
  • 9. Delafont, V., Samba-Louaka, A., Cambau, E., Bouchon, D., Moulin, L., and Héchard, Y., 2017, Mycobacterium llatzerense, a waterborne Mycobacterium, that resists phagocytosis by Acanthamoeba castellanii, Sci. Rep., 7(1), 46270.
  •  
  • 10. Edgar, R.C., 2010, Search and clustering orders of magnitude faster than blast, Bioinform., 26(19), 2460-2461.
  •  
  • 11. Forbes, B.A., Hall, G.S., Miller, M.B., Novak, S.M., Rowlinson, M.-C., Salfinger, M., Somoskövi, A., Warshauer, D.M., and Wilson, M.L., 2018, Practical guidance for clinical microbiology laboratories: Mycobacteria, Clin. Microbiol. Rev., 31(2), e00038-00017.
  •  
  • 12. Ghilamicael, A.M., Boga, H.I., Anami, S.E., Mehari, T., and Budambula, N.L.M., 2018, Potential human pathogenic bacteria in five hot springs in eritrea revealed by next generation sequencing, PLoS One, 13(3), e0194554.
  •  
  • 13. Gibbs, R.J., 1970, Mechanisms controlling world water chemistry, Science, 170(3962), 1088-1090.
  •  
  • 14. Griebler, C. and Lueders, T., 2009, Microbial biodiversity in groundwater ecosystems, Freshw. Biol., 54(4), 649-677.
  •  
  • 15. Hallbeck, L. and Pedersen, K., 2014, The family Gallionellaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, p. 853-858.
  •  
  • 16. Hassan, Z., Sultana, M., van Breukelen, B.M., Khan, S.I., and Röling, W.F., 2015, Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh, FEMS Microbiol. Ecol., 91(4).
  •  
  • 17. Hlavinek, P., Bonacci, O., Marsalek, J., and Mahrikova, I., 2008, Dangerous pollutants (Xenobiotics) in urban water cycle. Nato Science for Peace and Security Series. Springer, Dordrecht.
  •  
  • 18. Hounslow, A., 2018, Water quality data: Analysis and interpretation, p. 1-398.
  •  
  • 19. Huntley, S., Hamann, N., Wegener-Feldbrügge, S., Treuner-Lange, A., Kube, M., Reinhardt, R., Klages, S., Müller, R., Ronning, C.M., Nierman, W.C., and S©ªgaard-Andersen, L., 2010, Comparative genomic analysis of fruiting body rormation in Myxococcales, Mol. Biol. Evol., 28(2), 1083-1097.
  •  
  • 20. Ibekwe, A.M., Leddy, M., and Murinda, S.E., 2013, Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing, PLoS One, 8(11), e79490.
  •  
  • 21. Janniche, G.S., Spliid, H., and Albrechtsen, H.J., 2012, Microbial community-level physiological profiles (CLPP and herbicide mineralization potential in groundwater affected by agricultural land use, J. Contam. Hydrol., 140-141, 45-55.
  •  
  • 22. Jeong, C.H., Yang, J.H., Lee, Y.J., Lee, Y.C., Choi, H.Y., Kim, M.S., Kim, H.K., Kim, T.S., and Jo, B.U., 2015, Occurrences of uranium and radon-222 from groundwaters in various geological environment in the Hoengseong area., The J. Eng. Geol., 25(4), 557-576.
  •  
  • 23. Kanamori, H., Weber, D.J., and Rutala, W.A., 2016, Healthcare outbreaks associated with a water reservoir and infection prevention strategies, Clin. Infect. Dis., 62(11), 1423-1435.
  •  
  • 24. Kasalický, V., Jezbera, J., Hahn, M.W., and Šimek, K., 2013, The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains, PLoS One, 8(3), e58209.
  •  
  • 25. Katsoyiannis, I.A. and Zouboulis, A.I., 2006, Use of iron-and manganese-oxidizing bacteria for the combined removal of iron, manganese and arsenic from contaminated groundwater, Water Qual. Rese. J., 41(2), 117-129.
  •  
  • 26. Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., and Stackebrandt, E., 2006, Introduction to the proteobacteria. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (Eds.), The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses. Springer New York, New York, NY, p. 3-37.
  •  
  • 27. KIGAM, 2019, Integrated technology development for securing groundwater/geothermal resources and conserving ecosystem according to climate change.
  •  
  • 28. Kim, D.-H., Moon, S.-H., Ko, K.-S., and Kim, S., 2020, Microbial community structures related to arsenic concentrations in groundwater occurring in Haman area, South Korea, Econ. Environ. Geol., 53(6), 655-666.
  •  
  • 29. Kim, H., Kaown, D., Mayer, B., Lee, J.-Y., Hyun, Y., and Lee, K.-K., 2015, Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses, Sci. Total Environ., 533, 566-575.
  •  
  • 30. Kim, K.-H., Yun, S.-T., Chae, G.-T., Choi, B.-Y., Kim, S.-O., Kim, K., Kim, H.-S., and Lee, C.-W., 2002, Nitrate contamination of alluvial groundwaters in the Keum river watershed area: Source and behaviors of nitrate, and suggestion to secure water supply, The J. Eng. Geol., 12(4), 471-484.
  •  
  • 31. Ko, K.-S., Ahn, J.-S., Suk, H.-J., Lee, J.-S., and Kim, H.-S., 2008, Hydrogeochemistry and statistical analysis of water quality for small potable water supply system in Nonsan area, J. Soil and Groundw. Environ., 13(6), 72-84.
  •  
  • 32. Korbel, K., Chariton, A., Stephenson, S., Greenfield, P., and Hose, G.C., 2017, Wells provide a distorted view of life in the aquifer: Implications for sampling, monitoring and assessment of groundwater ecosystems, Sci. Rep., 7(1), 40702.
  •  
  • 33. Kwon, H.-I., Koh, D.-C., Jung, B., and Ha, K., 2017, Quantification of seasonally variable water flux between aquifer and stream in the riparian zones with water curtain cultivation activities using numerical simulation., J. Geol. Soc. Korea, 53, 277-290.
  •  
  • 34. Kwon, H.-I., Koh, D.-C., Jung, Y.-Y., Kim, D.-H., and Ha, K., 2020, Evaluating the impacts of intense seasonal groundwater pumping on stream–aquifer interactions in agricultural riparian zones using a multi-parameter approach, J. Hydrol., 584, 124683.
  •  
  • 35. Lacroix, B. and Citovsky, V., 2013. Agrobacterium. In: Maloy, S., Hughes, K. (Eds.), Brenner's encyclopedia of genetics (Second Edition). Academic Press, San Diego, p. 52-54.
  •  
  • 36. Lall, U., Josset, L., and Russo, T., 2020, A snapshot of the world's groundwater challenges, Annu. Rev. Environ. Resour., 45, 171-194.
  •  
  • 37. Lee, G.-M., Park, S., Kim, K.-I., Jeon, S.-H., Song, D., Kim, D.-h., Kim, T.-S., Yun, S.-T., Chung, H.M., and Kim, H.-K., 2017, Evaluation for impacts of nitrogen source to groundwater quality in livestock farming area, Korean J. Soil Sci. Fert., 50(5), 345-356.
  •  
  • 38. Lee, J.-C., Kim, S.-G., and Whang, K.-S., 2015, Sphingobium subterraneum sp. Nov., isolated from ground water, Int. J. Syst. Evol. Microbiol., 65(Pt_2), 393-398.
  •  
  • 39. Lee, J.-H., Lee, B.-J., and Unno, T., 2018, Bacterial communities in ground-and surface water mixing zone induced by seasonal heavy extraction of groundwater, Geomicrobiol. J., 35(9), 768-774.
  •  
  • 40. Li, W., Fu, L., Niu, B., Wu, S., and Wooley, J., 2012, Ultrafast clustering algorithms for metagenomic sequence analysis, Brief. Bioinform., 13(6), 656-668.
  •  
  • 41. Moon, J.-T., Kim, K.-J., Kim, S.-H., Jeong, C.-S., and Hwang, G.-S., 2008, Geochemical investigation on arsenic contamination in the alluvial ground-water of Mankyeong river watershed, Econ. Environ. Geol., 41(6), 673-683.
  •  
  • 42. Mueller, D.K. and Helsel, D., 1996, Nutrients in the nation's waters--too much of a good thing?
  •  
  • 43. Nelson, W.C. and Stegen, J.C., 2015, The teduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle, Front. Microbiol., 6, 713-713.
  •  
  • 44. Oh, S. and Choi, D., 2019, Microbial community enhances biodegradation of bisphenol a through selection of Sphingomonadaceae, Microb. Ecol., 77(3), 631-639.
  •  
  • 45. Oh, Y.H., Koh, D.-C., Kwon, H.-I., Jung, Y.-Y., Lee, K.Y., Yoon, Y.-Y., Kim, D.-H., Moon, H.S., and Ha, K., 2021, Identifying and quantifying groundwater inflow to a stream using 220Rn and 222Rn as natural tracers, J. Hydrol. Reg. Stud., 33, 100773.
  •  
  • 46. Oh, Y.H., Kim, D.-H., Lee, S.-H., Moon, H.S., and Cho, S.Y., 2020, Determining characteristics of groundwater inflow to the stream in an urban area using hydrogeochemical tracers (222Rn and major dissolved ions) and microbial community analysis, J. Soil Groundw. Environ., 25(2), 16-23.
  •  
  • 47. Orata, F.D., Meier-Kolthoff, J.P., Sauvageau, D., and Stein, L.Y., 2018, Phylogenomic analysis of the gammaproteobacterial methanotrophs (rrder Methylococcales) calls for the reclassification of members at the genus and species levels, Front. Microbiol., 9(3162).
  •  
  • 48. Oren, A., 2014, The family Rhodocyclaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer Berlin Heidelberg, Berlin, Heidelberg, p. 975-998.
  •  
  • 49. Pachepsky, Y., Shelton, D.R., McLain, J.E.T., Patel, J., and Mandrell, R.E., 2011, Irrigation waters as a source of pathogenic microorganisms in produce: a review, Adv. Agron., 113, 75-141.
  •  
  • 50. Pagadala, S., Marine, S.C., Micallef, S.A., Wang, F., Pahl, D.M., Melendez, M.V., Kline, W.L., Oni, R.A., Walsh, C.S., Everts, K.L., and Buchanan, R.L., 2015, Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes, Int. J. Food. Microbiol., 196, 98-108.
  •  
  • 51. Pedersen, K., 2011, Gallionella. In: Reitner, J., Thiel, V. (Eds.), Encyclopedia of Geobiology. Springer Netherlands, Dordrecht, p. 411-412.
  •  
  • 52. Percival, S.L. and Williams, D.W., 2014, Chapter Nine - Mycobacterium. In: Percival, S.L., Yates, M.V., Williams, D.W., Chalmers, R.M., Gray, N.F. (Eds.), Microbiology of Waterborne Diseases (Second Edition). Academic Press, London, p. 177-207.
  •  
  • 53. Piper, A.M., 1944, A Graphic procedure in the geochemical interpretation of water-analyses, Eos, Transactions American Geophysical Union, 25(6), 914-928.
  •  
  • 54. Ramírez-Castillo, F.Y., Loera-Muro, A., Jacques, M., Garneau, P., Avelar-González, F.J., Harel, J., and Guerrero-Barrera, A.L., 2015, Waterborne pathogens: detection methods and challenges, Pathogens, 4(2), 307-334.
  •  
  • 55. Saether, O.M. and De Caritat, P., 1996, Geochemical processes, weathering and groundwater recharge in catchments. CRC Press.
  •  
  • 56. Sang, S., Zhang, X., Dai, H., Hu, B.X., Ou, H., and Sun, L., 2018, Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the Pearl river delta, China, Sci. Rep., 8(1), 17317.
  •  
  • 57. Schulze-Röbbecke, R., 1993, Mycobacteria in the environment, Immun. Infekt., 21(5), 126-131.
  •  
  • 58. Sherwood, W.C., 1989, Chloride loading in the south fork of the Shenandoah river, Virginia, U.S.A, Environ. Geol., 14, 99-106.
  •  
  • 59. Slover, C.M. and Danziger, L., 2008, Lactobacillus: a review, Clin. Microbiol. Newsl., 30(4), 23-27.
  •  
  • 60. Spanevello, M.D. and Patel, B.K.C., 2004, The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel, FEMS Microbiol. Ecol., 50(1), 63-73.
  •  
  • 61. Stites, W. and Kraft, G.J., 2001, Nitrate and chloride loading to groundwater from an irrigated north-central U.S. sand-plain vegetable field, J. Environ. Qual., 30(4), 1176-1184.
  •  
  • 62. Stoecker, K., Bendinger, B., Schöning, B., Nielsen, P.H., Nielsen, J.L., Baranyi, C., Toenshoff, E.R., Daims, H., and Wagner, M., 2006, Cohn¡¯s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase, Proc. Natl. Acad. Sci., 103(7), 2363-2367.
  •  
  • 63. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M., and Michel, G., 2011, Environmental and gut Bacteroidetes: the food connection, Front. Microbiol., 2, 93-93.
  •  
  • 64. UN Water, 2018, Progress on level of water stress: global baseline for SDG indicator 6.4. 2, UN Water, Geneva (2018).
  •  
  • 65. Uyttendaele, M., Jaykus, L.-A., Amoah, P., Chiodini, A., Cunliffe, D., Jacxsens, L., Holvoet, K., Korsten, L., Lau, M., McClure, P., Medema, G., Sampers, I., and Rao Jasti, P., 2015, Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production, Comp. Rev. Food Sci. Food Saf., 14(4), 336-356.
  •  
  • 66. Van Der Linden, I., Cottyn, B., Uyttendaele, M., Berkvens, N., Vlaemynck, G., Heyndrickx, M., and Maes, M., 2014, Enteric pathogen survival varies substantially in irrigation water from Belgian lettuce producers, Int. J. Environ. Re.s Public Health, 11(10), 10105-10124.
  •  
  • 67. Wang, W., Wang, H., Feng, Y., Wang, L., Xiao, X., Xi, Y., Luo, X., Sun, R., Ye, X., Huang, Y., Zhang, Z., and Cui, Z., 2016, Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze river, Sci. Rep., 6(1), 35046.
  •  
  • 68. Waśkiewicz, A. and Irzykowska, L., 2014, Flavobacterium spp. – characteristics, occurrence, and toxicity. In: Batt, C.A., Tortorello, M.L. (Eds.), Encyclopedia of Food Microbiology (Second Edition). Academic Press, Oxford, p. 938-942.
  •  
  • 69. Wolfe, R., 1960, Observations and studies of Crenothrix polyspora, J. Am. Water Work. Assoc., 52, 915-918.
  •  
  • 70. Yang, J.H., Kim, H.-K., Kim, M., Lee, M.K., Shin, I.K., Park, S.H., Kim, H.S., Ju, B.K., Kim, D.S., and Kim, T.S., 2015, Evaluation of groundwater quality deterioration using the hydrogeochemical characteristics of shallow portable groundwater in an agricultural area, The J. Eng. Geol., 25(4), 533-545.
  •  
  • 71. Yoon, J., Park, S., Choi, H., Kim, D.H., Kim, M., Yun, S.-T., Kim, Y., and Kim, H.-K., 2020, Analysis of groundwater quality and contamination factors in livestock region, South Korea, J. Soil Groundw. Environ., 25(4), 98-105.
  •  
  • 72. Yoon, K.-S., Tsukada, N., Sakai, Y., Ishii, M., Igarashi, Y., and Nishihara, H., 2008, Isolation and characterization of a new facultatively autotrophic hydrogen-xxidizing betaproteobacterium, Hydrogenophaga sp. AH-24, FEMS Microbiol. Lett., 278(1), 94-100.
  •  
  • 73. Zeng, X., Hosono, T., Matsunaga, M., Ohta, H., Niidome, T., Shimada, J., and Morimura, S., 2017, Spatial distribution of microbial communities in the alluvial aquifer along the Oyodo river, Miyakonojo basin, Japan, J. Water Environ. Technol., 15(4), 152-162.
  •  
  • 74. Zhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., and Cheng, X., 2016, Alterations in soil microbial community composition and biomass following agricultural land use change, Sci. Rep., 6(1), 36587.
  •  

This Article

  • 2022; 27(2): 61-75

    Published on Apr 30, 2022

  • 10.7857/JSGE.2022.27.2.061
  • Received on Feb 17, 2022
  • Revised on Mar 7, 2022
  • Accepted on Mar 22, 2022

Correspondence to

  • Dong-Hun Kim
  • Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea

  • E-mail: donghun@kigam.re.kr