• Assessing the Role of Citric Acid in Denitrification of Nitrate in Slow-releasing Carbon Source Tablet
  • Kyungjin Han1·Yuhoon Yeum2·Young Kim2·Sooyoul Kwon3*

  • 1Department of Environmental Engineering, Korea National University of Transportation, Chungcheongbuk-do 27469, Korea
    2Department of Environmental Engineering, Korea University, Sejong 30019, Korea
    3Department of Environmental Health, Korea National Open University, Seoul 03087, Korea

  • 완효성 탄소원 정제 내 citric acid의 생물학적 탈질소화 영향
  • 한경진1·염여훈2·김 영2·권수열3*

  • 1한국교통대학교 환경공학과, 2고려대학교 환경시스템공학과, 3한국방송통신대학교 보건환경학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Frey, B. and Rieder, S.R., 2013, Response of forest soil bacterial communities to mercury chloride application, Soil Biol. Biochem., 65, 329-337.
  •  
  • 2. Giammarino, M. and Quatto, P., 2015, Nitrates in drinking water: relation with intensive livestock production, J. Prev. Med. Hyg., 56(4), E187-E189.
  •  
  • 3. Han, K., Yoon, J., Yeum, Y., Park, S., Kim, H.K., Kim, M., Chung, H.M., Kwon, S., Yun, S.-T. and Kim, Y., 2020, Efficacy of in situ well-based denitrification bio-barrier (WDB) remediating high nitrate flux in groundwater near a stock-raising complex, J. Environ. Manage., 258, 110004.
  •  
  • 4. Heinrich, A., Sullivan, D., and Moore, A.D., 2022, Indicators of lime reactivity in soil: particle size, carbon dioxide evolution, and citric acid titration, Arch. Agron. Soil Sci., 68(6), 732-748.
  •  
  • 5. Hiller-Bittrolff, K., Foreman, K., Bulseco-McKim, A.N., Benoit, J., and Bowen, J.L., 2018, Effects of mercury addition on microbial community composition and nitrate removal inside permeable reactive barriers, Environ. Pollut., 242, 797-806.
  •  
  • 6. Kim, K.H., Yun, S.T., Mayer, B., Lee, J.H., Kim, T.S., and Kim, H.K., 2015, Quantification of nitrate sources in groundwater using hydrochemical and dual isotopic data combined with a Bayesian mixing model, Agric. Ecosyst. Environ., 199, 369-381.
  •  
  • 7. Mielcarek, A., Rodziewicz, J., Janczukowicz, W., Dabrowska, D., Ciesielski, S., Thornton, A., and Struk-Soko©©owska, J., 2017, Citric acid application for denitrification process support in biofilm reactor, Chemosphere, 171, 512-519.
  •  
  • 8. Nickerson, B., Kong, A., Gerst, P., and Kao, S., 2018, Correlation of dissolution and disintegration results for an immediate-release tablet, J. Pharm. Biomed. Anal., 150, 333-340.
  •  
  • 9. NIER, 2012, Survey on the background and pollution of groundwater in livestock area.
  •  
  • 10. NIER, 2021, Nirate management for groundwater quality improvement in agricultural and livestock area (V).
  •  
  • 11. Park, S., Kim, H.K., Kim, D.H., Lee, G.M., Yoon, J., Choi, H., Kim, M., Han, K., Kim, Y., and Chung, H.M., 2019, The effectiveness of injected carbon sources in enhancing the denitrifying processes in groundwater with high nitrate concentrations, Process Saf. Environ. Prot., 131, 205-211.
  •  
  • 12. Patel, S., Scott, N., Patel, K., Mohylyuk, V., McAuley, W.J., and Liu, F., 2020, Easy to swallow ¡°Instant¡± jelly formulations for sustained release gliclazide delivery, J. Pharm. Sci., 109(8), 2474-2484.
  •  
  • 13. Ribera-Guardia, A., Kassotaki, E., Gutierrez, O., and Pijuan, M., 2014, Effect of carbon source and competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial community, Process Biochem., 49(12), 2228-2234.
  •  
  • 14. Rittmann, B.E. and McCarty, P.L., 2001, Environmental biotechnology: principles and applications, McGraw-Hill Education.
  •  
  • 15. van der Schans, M.L., Harter, T., Leijnse, A., Mathews, M.C., and Meyer, R.D., 2009, Characterizing sources of nitrate leaching from an irrigated dairy farm in Merced County, California, J. Contam. Hydrol., 110(1-2), 9-21.
  •  
  • 16. Vancheeswaran, S., Halden, R.U., Williamson, K.J., Ingle, J.D., and Semprini, L., 1999, Abiotic and biological transformation of tetraalkoxysilanes and trichloroethene/cis-1, 2-dichloroethene cometabolism driven by tetrabutoxysilane-degrading microorganisms. Environ. Sci. Technol., 33(7), 1077-1085.
  •  
  • 17. Wang, Y., Wiatrowski, H.A., John, R., Lin, C.C., Young, L.Y., Kerkhof, L.J., Yee, N., and Barkay, T., 2013, Impact of mercury on denitrification and denitrifying microbial communities in nitrate enrichments of subsurface sediments, Biodegradation, 24(1), 33-46.
  •  
  • 18. Yeum, Y., Han, K., Kang, J.H., Kim, D.W., Park, C.W., Kwon, S., and Kim, Y., 2020, Production, characterization, and evaluation of two types of slow-releasing carbon source tablets for in-situ heterotrophic nitrate denitrification in aquifers, Chemosphere, 260, 127478.
  •  
  • 19. Yu, S., and Semprini, L., 2002, Comparison of trichloroethylene reductive dehalogenation by microbial communities stimulated on silicon-based organic compounds as slow-release anaerobic substrates. Water Res., 36(20), 4985-4996.
  •  

This Article

  • 2022; 27(3): 41-49

    Published on Jun 30, 2022

  • 10.7857/JSGE.2022.27.3.041
  • Received on May 24, 2022
  • Revised on May 24, 2022
  • Accepted on Jun 21, 2022

Correspondence to

  • Sooyoul Kwon
  • Department of Environmental Health, Korea National Open University, Seoul 03087, Korea

  • E-mail: sykwon@knou.ac.kr