• Geophysical Exploration and Well Logging for the Delineation of Geological Structures in a Testbed
  • Huieun Yu1·Jehyun Shin2·Bitnarae Kim3·Ahyun Cho1·Gang Hoon Lee4·Sukjoon Pyun4·Seho Hwang2·Young-Chul Yu5·Ho-Young Cho6·Myung Jin Nam1,7*

  • 1Department of Energy and mineral resources engineering, Sejong University, Seoul 05006, Korea
    2Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea
    3Bureau de Recherches Géologiques et Minières 45100, France
    4Department of Energy and mineral resources engineering, Inha University, Incheon 22212, Korea
    5KOTAM, Daejeon 34173, Korea
    6Department of Earth and Environmental Sceinces, Korea University, Seoul 02841, Korea
    7Department of Energy Resources and Geosystem Engineering, Sejong University, Seoul 05006, Korea

  • 실험 부지에서의 지질구조 파악을 위한 물리탐사 및 물리검층
  • 유희은1·신제현2·김빛나래3·조아현1·이강훈4·편석준4·황세호2·유영철5·조호영6·남명진1,7*

  • 1세종대학교 에너지자원공학과
    2한국지질자원연구원
    3Bureau de Recherches Géologiques et Minières
    4인하대학교 에너지자원공학과
    5코탐
    6고려대학교 지구환경과학과
    7세종대학교 지구자원시스템공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abdullahi, N.K., Osazuwa, I.B., and Sule, P.O., 2011, Application of integrated geophysical techniques in the investigation of groundwater contamination: a case study of municipal solid waste leachate, Ozean Journal of Applied Sciences, 4(1), 7-25.
  •  
  • 2. Atekwana, E.A., Werkema Jr, D.D., Duris, J.W., Rossbach, S., Atekwana, E.A., Sauck, W.A., Cassidy, D.P., Means, J., and Legall, F.D., 2004, In-situ apparent conductivity measurements and microbial population distribution at a hydrocarbon-contaminated site, Geophysics, 69(1), 56-63.
  •  
  • 3. Atekwana, E.A. and Atekwana, E.A., 2010, Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review, Surv. Geophys., 31(2), 247-283.
  •  
  • 4. Allen, J.P., Atekwana, E.A., Atekwana, E.A., Duris, J.W., Werkema, D.D., and Rossbach, S., 2007, The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures, Appl. Environ. Microbiol., 73(9), 2860-2870.
  •  
  • 5. Al Hagrey, S.A. and Petersen, T., 2011, Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography, Geophysics, 76(2), G25-G35.
  •  
  • 6. Benson, A.K., 1995, Applications of ground penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities, J. Appl. Geophy., 33(1-3), 177-193.
  •  
  • 7. Cardarelli, E. and Di Filippo, G., 2009, Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: a case study in Rho (Milan-Italy), Waste Manag. Res., 27(6), 595-602.
  •  
  • 8. Carlson, N.R. and Urquhart, S.A., 2004, February. Comparisons Of Ip And Resistivity Data At Several Old, Buried Landfills, Proceedings of the In 17th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists and Engineers, Colorado, USA, p.186.
  •  
  • 9. Carlson, K.M., Goodman, L.K., and May-Tobin, C.C., 2015, Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations, Environ. Res. Lett., 10(7), 074006.
  •  
  • 10. Castelluccio, M., Agrahari, S., De Simone, G., Pompilj, F., Lucchetti, C., Sengupta, D., Galli, G., Friello, P., Curatolo, P., Giorgi, R., and Tuccimei, P., 2018, Using a multi-method approach based on soil radon deficit, resistivity and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India, Environ. Sci. Pollut. Res., 25(13), 12515-12527.
  •  
  • 11. Chambers, J., Ogilvy, R., Meldrum, P., and Nissen, J., 1999, 3D resistivity imaging of buried oil-and tar-contaminated waste deposits, European Journal of Environmental and Engineering Geophysics, 4(1), 3-16.
  •  
  • 12. Chambers, J.E., Loke, M.H., Ogilvy, R.D., and Meldrum, P.I., 2004, Noninvasive monitoring of DNAPL migration through a saturated porous medium using electrical impedance tomography, J. Contam. Hydrol., 68(1-2), 1-22.
  •  
  • 13. Doherty, R., Kulessa, B., Ferguson, A.S., Larkin, M.J., Kulakov, L.A., and Kalin, R.M., 2010, A microbial fuel cell in contaminated ground delineated by electrical self‐potential and normalized induced polarization data, J. Geophys. Res: Biogeosciences, 115(G3).
  •  
  • 14. Reynolds, J.M., 1997, Asn Introduction to Applied and Environmental Geophysics, John Wiley, Chichester, U. K.
  •  
  • 15. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., and Christiansen, A.V., 2012, Mapping of landfills using time‐domain spectral induced polarization data: the Eskelund case study, Near Surf. Geophys., 10(6), 575-586.
  •  
  • 16. KIGAM, 2001, DIPRO version 4.01, Processing and interpretation software for electrical resistivity data. KIGAM, Daejeon, South Korea.
  •  
  • 17. Kowalsky, M.B., Gasperikova, E., Finsterle, S., Watson, D., Baker, G., and Hubbard, S.S., 2011, Coupled modeling of hydrogeochemical and electrical resistivity data for exploring the impact of recharge on subsurface contamination, Water Resour. Res., 47(2).
  •  
  • 18. KEITI, 2019, Annual report 3rd, http://smartsem.korea.ac.kr/board/main.do?s_MENU_SEQ=20180022&s_DVS_CD=NOMAL &s_BOARD_SEQ=20180022# [accessed 22.06.29]
  •  
  • 19. Jegede, A.J., Aimufua, G.I.O., and Akosu, N.I., 2012, Electronic Voting: A Panacea for electoral irregularities in developing countries, International Journal of Science and Knowledge, 1(1), 17-37.
  •  
  • 20. Lachhab, A., Benyassine, E.M., Rouai, M., Dekayir, A., Parisot, J.C., and Boujamaoui, M., 2020, Integration of multi-geophysical approaches to identify potential pathways of heavy metals contamination-a case study in Zeida, Morocco, J. Environ. Eng. Geophys., 25(3), 415-423.
  •  
  • 21. Matias, M.S., da Silva, M.M., Ferreira, P., and Ramalho, E., 1994, A geophysical and hydrogeological study of aquifers contamination by a landfill, J. Appl. Geophy., 32(2-3), 155-162.
  •  
  • 22. McKenna, J., Sherlock, D., and Evans, B., 2001, Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow, J. Contam. Hydrol., 53(1-2), 133-150.
  •  
  • 23. Naudet, V., Gourry, J.C., Mathieu, F., Girard, J.F., Blondel, A., and Saada, A., 2011, September, 3D electrical resistivity tomography to locate DNAPL contamination in an urban environment. In Near Surface 2011-17th EAGE European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists & Engineers, pp. cp-253.
  •  
  • 24. Nivorlis, A., Dahlin, T., Rossi, M., Höglund, N., and Sparrenbom, C., 2019, Multidisciplinary characterization of chlorinated solvents contamination and in-situ remediation with the use of the direct current resistivity and time-domain induced polarization tomography, Geosciences, 9(12), 487.
  •  
  • 25. Power, C., Tsourlos, P., Ramasamy, M., Nivorlis, A., and Mkandawire, M., 2018, Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada, J. Appl. Geophy., 150, 40-51.
  •  
  • 26. Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, P., Mattu, G., and Linton, B., 2002, Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry, J. Toxicol. Environ. Health A Part A, 65(1), 1-142.
  •  
  • 27. Santos, F.A.M., Mateus, A., Figueiras, J., and Goncalves, M.A., 2006, Mapping groundwater contamination around a landfill facility using the VLF-EM method: a case study, J. Appl. Geophy.,60(2), 115-125.
  •  
  • 28. Shin, J.B., Yu, K.M., and Naruse, T., 2003, Loess-paleosol stratigraphy of Dukso area, Namyangju city, Korea and correlation with Chinese loess-paleosol stratigraphy, Proceedings of The Geological Society of Korea, pp.113-113.
  •  
  • 29. Shin, J., Hwang, S., Jung, S.H., Han, W.S., Son, J.S., Nam, M.J., and Kim, T., 2022, Development of site-scale conceptual model using integrated borehole methods: Systematic approach for hydraulic and geometric evaluation, Water, 14(9), 1336.
  •  
  • 30. Vanhala, H., Soininen, H., and Kukkonen, I., 1992, Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment, Geophysics, 57(8), 1014-1017
  •  
  • 31. Watson, D.B., Doll, W.E., Jeffrey Gamey, T., Sheehan, J.R., and Jardine, P.M., 2005, Plume and lithologic profiling with surface resistivity and seismic tomography, Groundwater, 43(2), 169-177.
  •  
  • 32. Wealthall, G.P., Steele, A., Bloomfield, J.P., Moss, R.H., and Lerner, D.N., 2001, Sediment filled fractures in the Permo-Triassic sandstones of the Cheshire Basin: observations and implications for pollutant transport, J. Contam. Hydrol., 50(1-2), 41-51.
  •  
  • 33. Zelt, C.A., Azaria, A., and Levander, A., 2006, 3D seismic refraction traveltime tomography at a groundwater contamination site, Geophysics, 71(5), 67-78.
  •  
  • 34. Zhang, Q., Davis, L.C., and Erickson, L.E., 1998, Effect of vegetation on transport of groundwater and nonaqueous phase liquid contaminants, J. Hazard Subst Res, 1(8-20).
  •  

This Article

  • 2022; 27(S1): 19-33

    Published on Jul 31, 2022

  • 10.7857/JSGE.2022.27.S.019
  • Received on Apr 25, 2022
  • Revised on May 24, 2022
  • Accepted on Jun 27, 2022

Correspondence to

  • Myung Jin Nam
  • 1Department of Energy and mineral resources engineering, Sejong University, Seoul 05006, Korea
    7Department of Energy Resources and Geosystem Engineering, Sejong University, Seoul 05006, Korea

  • E-mail: nmj1203@sejong.ac.kr, nmj1203@gmail.com