• Review on the Remediation Method for Groundwater Contaminated with Cadmium
  • JongBeom Kwon1·Sunhwa Park1·Deok Hyun Kim1·JongHyun Yoon1·Hyeonhee Choi1·Moonsu Kim1·Young Kim2·Sun-Kyoung Shin1·Hyun-Koo Kim1*

  • 1National Institute of Environmental Research, Incheon 22689, Korea
    2Korea University, Sejong 30019, Korea

  • 지하수 중 카드뮴 저감 방안에 대한 고찰
  • 권종범1·박선화1·김덕현1·윤종현1·최현희1·김문수1·김 영2·신선경1·김현구1*

  • 1국립환경과학원
    2고려대학교 환경시스템공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ali Redha, A., 2020, Removal of heavy metals from aqueous media by biosorption, A. J. Bas. Appl. Sci., 27(1), 183-193.
  •  
  • 2. Amonette, J., Szecsody, J., Schaef, H., Gorby, Y., Fruchter, J. and Templeton, J., 1994, Abiotic Reduction of Aquifer Materials by Dithionite: A Promising In-situ Remediation Technology, Pacific Northwest Lab.
  •  
  • 3. Amos, P.W. and Younger, P.L., 2003, Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate, W. Re., 37(1), 108-120.
  •  
  • 4. Angelov, A. and Georgiev, P., 1998, In situ Treatment of Groundwater at Burgas Copper Mines, Bulgaria, by Enhancing Microbial Sulphate Reduction, p. 249, IAHS Press.
  •  
  • 5. Baker, H.M., Massadeh, A.M., and Younes, H.A., 2009, Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods, Envi. moni. assess., 157(1), 319-330.
  •  
  • 6. Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat, M.A., Dar, G., and Pandith, A.H., 2019, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Envi. Chemi. Letter., 17(2), 729-754.
  •  
  • 7. Benguella, B. and Benaissa, H., 2002, Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies, W. Re., 36(10), 2463-2474.
  •  
  • 8. Benner, S., Blowes, D.W., Gould, W.D., Herbert, R.B., and Ptacek, C.J., 1999, Geochemistry of a permeable reactive barrier for metals and acid mine drainage, Envi. Sci. & Tech., 33(16), 2793-2799.
  •  
  • 9. Bewley, R., 2007, Treatment of chromium contamination and chromium ore processing residue, Tech. Bulletin., 14.
  •  
  • 10. Bhatnagar, A. and Sillanpää, M., 2009, Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater-a short review, Advan. Inter. Science., 152(1-2), 26-38.
  •  
  • 11. Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., and Gupta, V.K., 2018, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxic. Envi. Safety., 148, 702-712.
  •  
  • 12. Caccin, M., Giacobbo, F., Da Ros, M., Besozzi, L., and Mariani, M., 2013, Adsorption of uranium, cesium and strontium onto coconut shell activated carbon, J. Radi. Nu. Chemi., 297(1), 9-18.
  •  
  • 13. Canty, M., 2000, Innovative in situ treatment of acid mine drainage using sulfate-reducing bacteria, Fifth International Conference on Acid Rock Drainage (ICARD) Proceedings, 2, pp. 1139-1148.
  •  
  • 14. Clifford, D., Subramonian, S., and Sorg, T.J., 1986, Water treatment processes. III. Removing dissolved inorganic contaminants from water, Environ. Sci. Tech., 20(11), 1072-1080.
  •  
  • 15. Colombani, N., Gervasio, M.P., Castaldelli, G., and Mastrocicco, M., 2020, Soil conditioners effects on hydraulic properties, leaching processes and denitrification on a silty-clay soil, Sci. Envi., 733, 139342.
  •  
  • 16. Dong, X., Ma, L.Q., and Li, Y., 2011, Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing, J. Hazard. Mater., 190(1-3), 909-915.
  •  
  • 17. Egirani, D., Poyi, N., and Shehata, N., 2020, Preparation and characterization of powdered and granular activated carbon from Palmae biomass for cadmium removal, Envi. Sci. & Tech., 17(4), 2443-2454.
  •  
  • 18. Erto, A., Lancia, A., Bortone, I., Di Nardo, A., Di Natale, M., and Musmarra, D., 2011, A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation, J. Envi. Manage., 92(1), 23-30.
  •  
  • 19. Falciglia, P.P., Gagliano, E., Brancato, V., Malandrino, G., Finocchiaro, G., Catalfo, A., De Guidi, G., Romano, S., Roccaro, P., and Vagliasindi, F.G., 2020, Microwave based regenerating permeable reactive barriers (MW-PRBs): proof of concept and application for Cs removal, Chemo., 251, 126582.
  •  
  • 20. Fine, P., Scagnossi, A., Chen, Y., and Mingelgrin, U., 2005, Practical and mechanistic aspects of the removal of cadmium from aqueous systems using peat, Envi. Pollu., 138(2), 358-367.
  •  
  • 21. Frindte, K., Allgaier, M., Grossart, H.-P., and Eckert, W., 2015, Microbial response to experimentally controlled redox transitions at the sediment water interface, PLoS One, 10(11), e0143428.
  •  
  • 22. Fruchter, J., Cole, C., and Williams, M., 1997, Creation of a Subsurface Permeable Treatment Barrier Using In situ Redox Manipulation, US Department of Energy (USDOE), Washington DC (United States).
  •  
  • 23. Geets, J., Diels, L., Geert, K.V., Brummeler, E.T., Broek, P.v.d., Ghyoot, W., Feyaerts, K., and Gevaerts, W., 2003, Proceedings Consoil 2003, Place, Published.
  •  
  • 24. Ghaeminia, M. and Mokhtarani, N., 2018, Remediation of nitrate-contaminated groundwater by PRB-Electrokinetic integrated process, J. Envi. Manage., 222, 234-241.
  •  
  • 25. Hanumantha Rao, B. and Gangadhara Reddy, N., 2017, Geoenvironmental Practices and Sustainability, pp. 69-89, Springer.
  •  
  • 26. Hasan, S., Krishnaiah, A., Ghosh, T.K., Viswanath, D.S., Boddu, V.M., and Smith, E.D., 2006, Adsorption of divalent cadmium (Cd (II)) from aqueous solutions onto chitosan-coated perlite beads, Ind. Eng. Chem. Res., 45(14), 5066-5077.
  •  
  • 27. Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., and Sengupta, B., 2011, Remediation technologies for heavy metal contaminated groundwater, J. Envi. Manage., 92(10), 2355-2388.
  •  
  • 28. Hem, J.D., 1985, Study and Interpretation of the Chemical Characteristics of Natural Water, Department of the Interior, US Geological Survey, Place, Published.
  •  
  • 29. Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., Zan, Q., and Li, R., 2019, Heavy metal adsorption with zeolites: The role of hierarchical pore architecture, Chemi. Engin. J., 359, 363-372.
  •  
  • 30. Huggins, T.M., Haeger, A., Biffinger, J.C., and Ren, Z.J., 2016, Granular biochar compared with activated carbon for wastewater treatment and resource recovery, W. Re., 94, 225-232.
  •  
  • 31. Ibrahimi, M.M. and Sayyadi, A.S., 2015, Application of natural and modified zeolites in removing heavy metal cations from aqueous media: an overview of including parameters affecting the process, J. Geo. Agri. Envi. Sci., 3(2), 1-7.
  •  
  • 32. Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y.S., and Cao, X., 2016, A review of biochar as a low-cost adsorbent for aqueous heavy metal removal, Envi. Sci. & Tech., 46(4), 406-433.
  •  
  • 33. Jha, I., Iyengar, L., and Rao, A.P., 1988, Removal of cadmium using chitosan, J. Envi. Engin., 114(4), 962-974.
  •  
  • 34. Joo, S.H., Feitz, A.J., and Waite, T.D., 2004, Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Technol., 38(7), 2242-2247.
  •  
  • 35. Jun, D., Yongsheng, Z., Weihong, Z., and Mei, H., 2009, Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater, J. Hazard. Mater., 161(1), 224-230.
  •  
  • 36. Kaprara, E., Pinakidou, F., Paloura, E.C., Zouboulis, A.I., and Mitrakas, M., 2018, Continuous flow process of Cr (VI) removal from drinking water through reduction onto FeOOH by inorganic sulfur reductants, W. Sci. Tech.: W. Su., 18(2), 737-744.
  •  
  • 37. Kasozi, G.N., Zimmerman, A.R., Nkedi-Kizza, P., and Gao, B., 2010, Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars), Environ. Sci. Technol., 44(16), 6189-6195.
  •  
  • 38. Kiran, M.G., Pakshirajan, K., and Das, G., 2017, An overview of sulfidogenic biological reactors for the simultaneous treatment of sulfate and heavy metal rich wastewater, Chemi. Engin. Sci., 158, 606-620.
  •  
  • 39. Kovar, K. and Herbert, M., 1998, Groundwater Quality: Remediation and Protection: Proceedings of the GQ'98 Conference Held in Tübingen, Germany, from 21 to 25 September, IAHS Press, Place, Published.
  •  
  • 40. Kubier, A., Wilkin, R.T., and Pichler, T., 2019. Cadmium in soils and groundwater: a review, Appl. Geochemi., 108, 104388.
  •  
  • 41. Lapointe, F., Fytas, K., and McConchie, D., 2006, Efficiency of Bauxsol¢â in permeable reactive barriers to treat acid rock drainage, M. W. Envi., 25(1), 37-44.
  •  
  • 42. Lee, M., Paik, I.S., Kim, I., Kang, H., and Lee, S., 2007, Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate, J. Hazard. Mater., 144(1-2), 208-214.
  •  
  • 43. Li, D., Kaplan, D.I., Knox, A.S., Crapse, K.P., and Diprete, D.P., 2014, Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents, J. Envi. Radio., 136, 56-63.
  •  
  • 44. Li, Z., Gu, H., Hong, B., Wang, N., and Chen, M., 2022, An innovative process for dealkalization of red mud using leachate from Mn-containing waste, J. Envi. Chemi. Engin., 10(2), 107222.
  •  
  • 45. Liang, L., Li, X., Lin, Z., Tian, C., and Guo, Y., 2020, The removal of Cd by sulfidated nanoscale zero-valent iron: The structural, chemical bonding evolution and the reaction kinetics, Chemi. Engin. J., 382, 122933.
  •  
  • 46. Lin, X., Burns, R.C., and Lawrance, G.A., 2005, Heavy metals in wastewater: the effect of electrolyte composition on the precipitation of cadmium (II) using lime and magnesia, Water, Air, and Soil Pollution, 165(1), 131-152.
  •  
  • 47. Liu, X., Chen, G.-R., Lee, D.-J., Kawamoto, T., Tanaka, H., Chen, M.-L., and Luo, Y.-K., 2014, Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents, Bio. Tech., 160, 142-149.
  •  
  • 48. Lockwood, C.L., Mortimer, R.J., Stewart, D.I., Mayes, W.M., Peacock, C.L., Polya, D.A., Lythgoe, P.R., Lehoux, A.P., Gruiz, K., and Burke, I.T., 2014, Mobilisation of arsenic from bauxite residue (red mud) affected soils: effect of pH and redox conditions, Appl. Geochemi., 51, 268-277.
  •  
  • 49. Lombi, E., Zhao, F.-J., Zhang, G., Sun, B., Fitz, W., Zhang, H., and McGrath, S.P., 2002, In situ fixation of metals in soils using bauxite residue: chemical assessment, Envi. Pollu., 118(3), 435-443.
  •  
  • 50. Ludwig, R.D., McGregor, R.G., Blowes, D.W., Benner, S.G., and Mountjoy, K., 2002, A permeable reactive barrier for treatment of heavy metals, Ground., 40(1), 59-66.
  •  
  • 51. Mandal, S., Muralidharan, C., and Mandal, A.B., 2019, Water pollution remediation techniques with special focus on adsorption, Advanced Research in Nanosciences for Water Technology, pp. 39-68, Springer.
  •  
  • 52. Mariana, M., HPS, A.K., Mistar, E., Yahya, E.B., Alfatah, T., Danish, M., and Amayreh, M., 2021, Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, J. W. Proc. Engin., 43, 102221.
  •  
  • 53. Marsh, H. and Reinoso, F.R., 2006, Activated Carbon, Elsevier, Place, Published.
  •  
  • 54. Miao, Z., Brusseau, M., Carroll, K.C., Carreón-Diazconti, C., and Johnson, B., 2012, Sulfate reduction in groundwater: characterization and applications for remediation, Envi. Geochemi. Heal., 34(4), 539-550.
  •  
  • 55. Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M., and Yasutake, A., 2000, Removal of SOx and NOx over activated carbon fibers, Carbon., 38(2), 227-239.
  •  
  • 56. Mohammed, A. S., Kapri, A., and Goel, R., 2011, Heavy metal pollution: Source, impact, and remedies, Biomanage. Metal-con. Soil., 20, 1-28
  •  
  • 57. Mohan, D. and Pittman Jr, C.U., 2006, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137(2), 762-811.
  •  
  • 58. Montaña, M., Camacho, A., Serrano, I., Devesa, R., Matia, L., and Vallés, I., 2013, Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal, J. Envi. Radio., 125, 86-92.
  •  
  • 59. Moraci, N. and Calabrò, P.S., 2010, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers, J. Envi. Manage., 91(11), 2336-2341.
  •  
  • 60. Motsi, T. 2010 Remediation of Acid Mine Drainage using Natural Zeolite, University of Birmingham.
  •  
  • 61. Mucsi, G., Halyag, N., Kurusta, T., and Kristály, F., 2021, Control of carbon dioxide sequestration by mechanical activation of red mud, Wa. Bio. Valori., 12(12), 6481-6495.
  •  
  • 62. Mukherjee, A., Zimmerman, A., and Harris, W., 2011, Surface chemistry variations among a series of laboratory-produced biochars, Geoderma, 163(3-4), 247-255.
  •  
  • 63. Obiri-Nyarko, F., Grajales-Mesa, S.J., and Malina, G., 2014, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemo., 111, 243-259.
  •  
  • 64. Puls, R.W., Paul, C.J., and Powell, R.M., 1999, The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test, Appl. Geochemi., 14(8), 989-1000.
  •  
  • 65. Rao, K., Mohapatra, M., Anand, S., and Venkateswarlu, P., 2010, Review on cadmium removal from aqueous solutions, J. Engin. Sci. Tech., 2(7).
  •  
  • 66. Rubinos, D.A. and Spagnoli, G., 2019, Assessment of red mud as sorptive landfill liner for the retention of arsenic (V), J. Envi. Manage., 232, 271-285.
  •  
  • 67. Saikhao, L., Setthayanond, J., Karpkird, T., and Suwanruji, P., 2017, Comparison of sodium dithionite and glucose as a reducing agent for natural indigo dyeing on cotton fabrics, MATEC Web of Conferences., 108, 03001, EDP Sciences.
  •  
  • 68. Scherer, M.M., Richter, S., Valentine, R.L., and Alvarez, P.J., 2000, Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up, Critical Reviews in Microbiology, 26(4), 221-264.
  •  
  • 69. Sedlazeck, K.P., Vollprecht, D., Müller, P., Mischitz, R., and Gieré, R., 2020, Impact of an in-situ Cr (VI)-contaminated site remediation on the groundwater, Envi. Sci. Pollu. Re., 27(13), 14465-14475.
  •  
  • 70. Shen, Y. and Buick, R., 2004, The antiquity of microbial sulfate reduction, Earth-Sci. Review., 64(3-4), 243-272.
  •  
  • 71. Shin, E.C., Park, J.J., Jeong, C.G., Kim, S.H., 2014, Adsorption characteristics evaluation of natural zeolite for heavy-metal contaminated material remediation, J. Korea. Geo. Soci., 13(2), 59-67.
  •  
  • 72. Singh, B., Alloway, B., and Bochereau, F., 2000, Cadmium sorption behavior of natural and synthetic zeolites, Communi. S. Sci. P. A., 31(17-18), 2775-2786.
  •  
  • 73. Song, J., Huang, G., Han, D., Hou, Q., Gan, L., and Zhang, M., 2021, A review of reactive media within permeable reactive barriers for the removal of heavy metal (loid) s in groundwater: Current status and future prospects, J. Clean. Pro., 319, 128644.
  •  
  • 74. Stefaniuk, M., Oleszczuk, P., Ok, Y.S., 2016, Review on nano zerovalent iron (nZVI): From synthesis to environmental applications, Chemi. Engin. J., 287, 618-632.
  •  
  • 75. Su, Y., Adeleye, A.S., Keller, A.A., Huang, Y., Dai, C., Zhou, X., and Zhang, Y., 2015, Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal, W. Re., 74, 47-57.
  •  
  • 76. Su, Y., Lowry, G.V., Jassby, D., Zhang. Y., 2019, Sulfide-modified NZVI(S-NZVI): Synthesis, characterization, and reactivity, Nano. Zero. I. Parti. Envi. Re., 359-386.
  •  
  • 77. Taamneh, Y. and Sharadqah, S., 2017, The removal of heavy metals from aqueous solution using natural Jordanian zeolite, Appl. W. Sci., 7(4), 2021-2028.
  •  
  • 78. Tajar, A.F., Kaghazchi, T., and Soleimani, M., 2009, Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells, J. Hazard. Mater., 165(1-3), 1159-1164.
  •  
  • 79. Tandon, P.K. and Singh, S.B., 2016, Redox processes in water remediation, Envi. Chemi. Letter., 14(1), 15-25.
  •  
  • 80. Tasharrofi, S., Rouzitalab, Z., Maklavany, D.M., Esmaeili, A., Rabieezadeh, M., Askarieh, M., Rashidi, A., and Taghdisian, H., 2020, Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs, Sci. Envi., 736, 139570.
  •  
  • 81. Thornton, E. and Jackson, R., 1994, Laboratory and Field Evaluation of the Gas Treatment Approach for Insitu Remediation of Chromate-contaminated Soils, Westinghouse Hanford Co.
  •  
  • 82. Ullah, S., Faiz, P., and Leng, S., 2020, Synthesis, Mechanism, and Performance Assessment of Zero‐Valent Iron for Metal‐Contaminated Water Remediation: A Review, CLEAN–S. A. W., 48(9), 2000080.
  •  
  • 83. Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., and Yu, G., 2019, Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review, Se. Purifi. Tech., 224, 373-387.
  •  
  • 84. Vanderheyden, S., Van Ammel, R., Sobiech-Matura, K., Vanreppelen, K., Schreurs, S., Schroeyers, W., Yperman, J., and Carleer, R., 2016, Adsorption of cesium on different types of activated carbon, J. Radio. Nu. Chemi., 310(1), 301-310.
  •  
  • 85. Wang, M. and Liu, X., 2021, Applications of red mud as an environmental remediation material: A review, J. Hazard. Mater., 408, 124420.
  •  
  • 86. Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., and Migliaccio, K.W., 2015, Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass, Chemo., 134, 257-262.
  •  
  • 87. Wang, S. and Wu, H., 2006, Environmental-benign utilisation of fly ash as low-cost adsorbents, J. Hazard. Mater., 136(3), 482-501.
  •  
  • 88. Waybrant, K., Blowes, D., and Ptacek, C., 1998, Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage, Environ. Sci. Technol., 32(13), 1972-1979.
  •  
  • 89. Weber, A., Ruhl, A.S., and Amos, R.T., 2013, Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling, J. Contami. Hydro., 151, 68-82.
  •  
  • 90. Yang, L., Donahoe, R.J., and Redwine, J.C., 2007, In situ chemical fixation of arsenic-contaminated soils: An experimental study, Sci. Envi., 387(1-3), 28-41.
  •  
  • 91. Zaini, M.A.A., Amano, Y., and Machida, M., 2010, Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber, J. Hazard. Mater., 180(1-3), 552-560.
  •  
  • 92. Zhou, D., Li, Y., Zhang, Y., Zhang, C., Li, X., Chen, Z., Huang, J., Li, X., Flores, G., and Kamon, M., 2014, Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates, J. Contami. Hydro., 168, 1-16.
  •  

This Article

  • 2022; 27(4): 22-36

    Published on Aug 31, 2022

  • 10.7857/JSGE.2022.27.4.022
  • Received on Jul 25, 2022
  • Revised on Aug 4, 2022
  • Accepted on Aug 22, 2022

Correspondence to

  • Hyun-Koo Kim
  • National Institute of Environmental Research, Incheon 22689, Korea

  • E-mail: khk288@korea.kr