• Stabilization of As and Heavy Metals in Farmland Soil using Iron Nanoparticles Impregnated Biochar
  • Il-Ha Koh1·Jung-Eun Kim1,2·So-Young Park1,2·Yu-Lim Choi3·Dong-Su Kim3·Deok Hyun Moon4·Yoon-Young Chang3*

  • 1National Environment Lab. (NeLab), Seoul 02841, Korea
    2Department of Energy & Climate Environment Fusion Technology, Graduate School, Hoseo University, Asan 31499, Korea
    3Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea
    4Department of Environmental Engineering, Chosun University, Gwangju 61452, Korea

  • 비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가
  • 고일하1·김정은1,2·박소영1,2·최유림3·김동수3·문덕현4·장윤영3*

  • 1환경기술정책연구원 (NeLab)
    2호서대학교 일반대학원 에너지기후환경융합기술학과
    3광운대학교 환경공학과
    4조선대학교 환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abdelhafez, A.A., Li, J., and Abbas, M.H.H., 2014, Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil, Chemosphere, 117, 66-71.
  •  
  • 2. Beesley, L., Inneh, O.S., Norton, G.J., Moreno-Jimenez, E., Pardo, T., Clemente, R., and Dawson, J.J.C., 2014, Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil, Environ. Pollut., 186, 195-202.
  •  
  • 3. Brady, N.C. and Weil, R.R., 2014, Elements of the Nature and Properties of Soils, Pearson Education Limited, 490 p., 624 p.
  •  
  • 4. Choi, Y.L., Angaru, G.K.R., Ahn, H.Y., Park, K.J., Joo, W.H., Yang, J.K., and Chang, Y.Y., 2020, Application of nano Fe0-impregnated biochar for the stabilization of As-contaminated soil, J. Environ. Impact Assess., 29(5), 350-362.
  •  
  • 5. Enaime, G., Bacaoui, A., Yaacoubi, A., and Lübken, M., 2020, Biochar for wastewater treatment-Conversion technologies and applications, Appl. Sci., 10, 1-29.
  •  
  • 6. Evangelou, V.P., 1998, Environmental Soil and Water Chemistry, John Wiley & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 151 p.
  •  
  • 7. Fard, M.R. and Pourghobadi, Z., 2018, The spectrophotometric determination of nystatin in real samples using solid phase extraction based on sodium dodecyl sulphate-coated magnetite nanoparticles, Anal. Bioanal. Chem. Res., 5(2), 249-259.
  •  
  • 8. Gwak, B.H. and Yoon, K.E., 2011, Plant Physiology, Hyangmunsa, 93 p.
  •  
  • 9. Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V., and Deng, H., 2015, Physicochemical properties and microbial responses in biochar-amended soils: mechanisms and future directions, Agric. Ecosyst. Environ., 206, 46-59.
  •  
  • 10. Gu, S.Y., Hsieh, C.T., Gandomi, Y.A., Yang, Z.F., Li, L., Fu, C.C., and Juang, R.S., 2019, Functionalization of activated carbons with magnetic iron oxide nanoparticles for removal of copper ions from aqueous solution, J. Mol. Loq., 277, 499-505.
  •  
  • 11. Hailegnaw, N.S., Merd, F., Pračke, K., Száková, J., and Tlustoš, P., 2019, Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment, J. Soil Sediment, 19, 2405-2416.
  •  
  • 12. Ho, P.H., Lee, S.Y., Lee, D.H., and Woo, H.C., 2014, Selective adsorption of tert-butylmercaptan and tetrahydrothiophene on modified activated carbons for fuel processing in fuel cell applications, Int. J. Hydrogen Energ., 39(12), 6737-6745.
  •  
  • 13. Jin, J., Li, S., Peng, X., Liu, W., Zhang, C., Yang, Y., Han, L., Du, Z., Sun, K., and Wang, X., 2018, HNO3 modified biochars for uranium (VI) removal from aqueous solution, Bioresource Technol., 256, 247-253.
  •  
  • 14. Kim, M.S., Min, H.G., Lee, B.J., Chang, S.I., Kim, J.G., Koo, N.I., Park, J.S., and Bak, G.I., 2014, The applicability of the acid mine drainage sludge in the heavy metal stabilization in soils, Korean J Environ Agric., 33(2), 78-85.
  •  
  • 15. KMFDS (Korea Mistry of Food and Drug Safety), 2021, Korean Food Standard Codex.
  •  
  • 16. Koh, I.H., Kim, E.Y., Ji, W.H., Yoon, D.G., and Chang, Y.Y., 2015, The fate of As and heavy metals in the flooded paddy soil stabilized by limestone and steelmaking slag, J. Soil Groundw. Environ., 20(1), 7-18.
  •  
  • 17. Koh, I.H., Kim, J.E., Kim, G.S., Park, M.S., Kang, D.M., and Ji, W.H., 2016, Stabilization of agricultural soil contaminated by arsenic and heavy metals using biochar derived from buffalo weed, J. Soil Groundw. Environ., 21(6), 87-100.
  •  
  • 18. KS I ISO 19730:2009, Soil quality – extraction of trace elements from soil using ammonium nitrate solution.
  •  
  • 19. Kumar, A. and Bhattacharya, T., 2022, Removal of arsenic by wheat straw biochar from soil, B. Environ. Contam. Tox., 108, 415-422.
  •  
  • 20. Kumar, A., Bhattacharya, T., Shaikh, W.A., Chakraborty, S., Owens, G., and Naushad, M., 2022, Valorization of fruit waste-based biochar for arsenic removal in soils, Environ. Res., 213, 113710.
  •  
  • 21. Kumpiene, J., Lagerkvist, A., and Maurice, C., 2008, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – A review, Waste Manage., 28(1), 215-225.
  •  
  • 22. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., and Crowley, D., 2011, Biochar effects on soil biota – A review, Soil Biol. Biochem., 43(9), 1812-1836.
  •  
  • 23. Lim, J.E., Lee, S.S., and Ok, Y.S., 2015, Efficiency of poultry manure biochar for stabilization of metals in contaminated soil, J Appl Biol Chem, 58(1), 39-50.
  •  
  • 24. Major, J., Lehmann, J., Rondon, M., and Goodale, C., 2010, Fate of soil-applied black carbon: downward migration, leaching and soil respiration, Global Change Biol., 16(4), 1366-1379.
  •  
  • 25. Masud, M.M., Li, J.Y., Xu, R.K., 2014, Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic ultisol, Pedosphere, 24(6), 791-798.
  •  
  • 26. NIER (National Institute of Environmental Research), 2018, Korea standard methods for soil analysis.
  •  
  • 27. NIAST (National Institute of Agricultural Science and Technology), 2010, Chemical methods for soil analysis.
  •  
  • 28. O¡¯neill, P., 1990, Arsenic, In: B.J. Alloway(ed.), Heavy Metals in Soils, John Wiley & Sons, Inc., New York, 93 p.
  •  
  • 29. Park, M.J., Ji, W.H., Koh, I.H., and Lee, S.H., 2018, Effect of soil factors on crop uptake of toxic trace elements, J. Soil Groundwater Environ., 23(5), 37-44.
  •  
  • 30. Singh, B., Singh, B.P., and Cowie, A.L., 2010, Characterisation and evaluation of biochars for their application as a soil amendment, Aust. J. Soil res., 48(7), 516-525.
  •  
  • 31. Sun, X., Xu, L., Jiang, W., Xuan, Y., Lu, W., Li, Z., Yang, S., and Gu, Z., Adsorption mechanism of rhein-coated Fe3O4 as magnetic adsorbent based on low-field NMR, 2020, Environ. Sci. Pollut. R., 28, 1052-1060.
  •  
  • 32. Steinnes, E., 2013, Lead, In: B.J. Alloway(ed.), Heavy Metals in Soils, Springer, Dordrecht, Heidelberg, New York, London, 402-403 p.
  •  
  • 33. Wenzel, W.W., 2013, Arsenic, In: B.J. Alloway(ed.), Heavy Metals in Soils, Springer, Dordrecht, Heidelberg, New York, London, 255-258 p.
  •  
  • 34. Woo, S.H., 2013, Biochar for soil carbon sequestration, Clean Technol., 19(3), 201-211.
  •  
  • 35. Yang, X., Zhang, S., Ju, M., and Liu, L., 2019, Preparation and modification of biochar materials and their application in soil Remediation, Appl. Sci., 9(7), 1365.
  •  
  • 36. Yun, S.W., Kang, S.I., Jin, H.G., and Yu, C., 2011, Leaching characteristics of arsenic and heavy metals and stabilization effects of limestone and steel refining slag in a reducing environment of flooded paddy soil, J. Agric. Life Sci., 45(6), 251-263.
  •  
  • 37. Zhou, Y., Gao, B., Zimmerman, A.R., Chen, H., Zhang, M., and Cao, X., 2014, Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions, Bioresource Technol., 152, 538-542.
  •  

This Article

  • 2022; 27(6): 1-10

    Published on Dec 31, 2022

  • 10.7857/JSGE..2022.27.6.001
  • Received on Oct 14, 2022
  • Revised on Oct 24, 2022
  • Accepted on Nov 18, 2022

Correspondence to

  • Yoon-Young Chang
  • Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea

  • E-mail: yychang@kw.ac.kr