• Single and Binary Competitive Sorption of Phenanthrene and Pyrene in Natural and Synthetic Sorbents
  • Md Abdullah Al Masud·Won Sik Shin*

  • School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Akinpelu, A.A., Ali, M.E., Johan, M.R., Saidur, R., Qurban, M.A., and Saleh, T.A., 2019, Polycyclic aromatic hydrocarbons extraction and removal from wastewater by carbon nanotubes: A review of the current technologies, challenges and prospects, Process Saf. Environ. Prot., 122, 68-82. https://doi.org/10.1016/j.psep.2018.11.006
  •  
  • 2. Al-Masud, M.A., Kim, D.G., and Shin, W.S., 2022a, Highly efficient degradation of phenolic compounds by Fe(II)-activated dual oxidant (persulfate/calcium peroxide) system, Chemosphere, 299, 134392. https://doi.org/10.1016/j.chemosphere.2022. 134392
  •  
  • 3. Al-Masud, M.A., Shin, W.S., and Kim, D.G., 2023, Degradation of phenol by ball-milled activated carbon (ACBM) activated dual oxidant (persulfate/calcium peroxide) system: Effect of preadsorption and sequential injection, Chemosphere, 312, 137120. https://doi.org/10.1016/j.chemosphere.2022. 137120
  •  
  • 4. Barriuso, E., Baer, U., and Calvet, R., 1992, Dissolved organic-matter and adsorption-desorption of dimefuron, atrazine, and carbetamide by soils, J. Environ. Qual., 21(3), 359-367.
  •  
  • 5. Billemont, P., Heymans, N., Normand, P., and De Weireld, G., 2017, IAST predictions vs co-adsorption measurements for CO2 capture and separation on MIL-100 (Fe), Adsorption, 23, 225-237. https://doi.org/10.1007/s10450-016-9825-6
  •  
  • 6. Bui, T.X. and Choi, H., 2010, Comment on adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes, Environ. Sci. Technol., 44(12), 4828. https://doi.org/10.1021/es100684f
  •  
  • 7. Chen, Xian, Liang, J., Bao, L., Gu, X., Zha, S., and Chen, X., 2022, Competitive and cooperative sorption between triclosan and methyl triclosan on microplastics and soil, Environ. Res., 212, 113548. https://doi.org/10.1016/j.envres.2022.113548
  •  
  • 8. Choi, J. and Shin, W.S., 2020, Removal of salicylic and ibuprofen by hexadecyltrimethylammonium-modified montmorillonite and zeolite, Minerals, 10(10), 898. https://doi.org/10.3390/min 10100898
  •  
  • 9. Kim, J.-H., Shin, W.S., Song, D.-I., and Choi, S.J., 2005, Multi-step competitive sorption and desorption of chlorophenols in surfactant modified montmorillonite, Water. Air. Soil Pollut., 166, 367-380. https://doi.org/10.1007/s11270-005-6329-5
  •  
  • 10. Kim, Y.S., Song, D.I., Jeon, Y.W., and Choi, S.J., 1996, Adsorption of organic phenols onto hexadecyltrimethylammonium-treated montmorillonite, Sep. Sci. Technol., 31(20), 2815-2830. https://doi.org/10.1080/01496399608000829
  •  
  • 11. Kleineidam, S., Schüth, C., and Grathwohl, P., 2002, Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants, Environ. Sci. Technol., 36(21), 4689-4697. https://doi.org/10.1021/es010293b
  •  
  • 12. Krzyszczak, A., Dybowski, M.P., Zarzycki, R., Koby©©ecki, R., Oleszczuk, P., and Czech, B., 2022, Long-term physical and chemical aging of biochar affected the amount and bioavailability of PAHs and their derivatives, J. Hazard. Mater., 440, 129795. https://doi.org/10.1016/j.jhazmat.2022.129795
  •  
  • 13. Luna, F.M.T., Oliveira Filho, A.N., Araújo, C.C.B., Azevedo, D.C.S., and Cavalcante, C.L., 2016. Adsorption of polycyclic aromatic hydrocarbons from heavy naphthenic oil using commercial activated carbons. 1. Fluid-Particle Studies, Ind. Eng. Chem. Res., 55(29), 8176-8183. https://doi.org/10.1021/acs.iecr. 6b01059
  •  
  • 14. Masud, M.A. Al, Kim, D.G., and Shin, W.S., 2022, Degradation of phenol using Fe(II)-activated CaO2: effect of ball-milled activated carbon (ACBM) addition, Environ. Res., 214, 113882. https://doi.org/10.1016/j.envres.2022.113882
  •  
  • 15. Niasar, H.S., Li, H., Kasanneni, T.V.R., Ray, M.B., and Xu, C.C., 2016, Surface amination of activated carbon and petroleum coke for the removal of naphthenic acids and treatment of oil sands process-affected water (OSPW), Chem. Eng. J., 293, 189-199. https://doi.org/10.1016/j.cej.2016.02.062
  •  
  • 16. Nyström, F., Nordqvist, K., Herrmann, I., Hedström, A., and Viklander, M., 2020, Removal of metals and hydrocarbons from stormwater using coagulation and flocculation, Water Res., 182, 115919. https://doi.org/10.1016/j.watres.2020.115919
  •  
  • 17. Oh, S., Kwak, M.Y., and Shin, W.S., 2009, Competitive sorption of lead and cadmium onto sediments, Chem. Eng. J., 152(2-3), 376-388. https://doi.org/10.1016/j.cej.2009.04.061
  •  
  • 18. Pan, B., Lin, D., Mashayekhi, H., and Xing, B., 2008, Adsorption and hysteresis of bisphenol A and 17¥á-ethinyl estradiol on carbon nanomaterials, Environ. Sci. Technol., 42(15), 5480-5485. https://doi.org/10.1021/es8001184
  •  
  • 19. Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P., and Kanellopoulos, N.K., 2009, Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data, J. Hazard. Mater., 162(2-3), 1347-1354. https://doi.org/10.1016/j.jhazmat.2008.06.022
  •  
  • 20. Pathak, S., Sakhiya, A.K., Anand, A., Pant, K.K., and Kaushal, P., 2022. A state-of-the-art review of various adsorption media employed for the removal of toxic Polycyclic aromatic hydrocarbons (PAHs): An approach towards a cleaner environment, J. Water Process Eng., 47, 102674. https://doi.org/10.1016/j.jwpe. 2022.102674
  •  
  • 21. Qiao, S. and Hu, X., 2000. Use IAST with MPSD to predict binary adsorption kinetics on activated carbon, AIChE J., 46(9), 1743-1752. https://doi.org/10.1002/aic.690460906
  •  
  • 22. Shakya, A., Vithanage, M., and Agarwal, T., 2022, Influence of pyrolysis temperature on biochar properties and Cr(VI) adsorption from water with groundnut shell biochars: Mechanistic approach, Environ. Res., 215, 114243. https://doi.org/10.1016/j.envres. 2022.114243
  •  
  • 23. Shin, W.S. and Song, D.I., 2005. Solubility-normalized Freundlich isotherm for the prediction of sorption of phenols in HDTMA modified montmorillonite, Geosci. J., 9, 249-259. https://doi.org/10.1007/BF02910585
  •  
  • 24. Tran, H.N., You, S.-J., Hosseini-Bandegharaei, A., and Chao, H.-P., 2017, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review, Water Res., 120, 88-116. https://doi.org/10.1016/j.watres.2017. 04.014
  •  
  • 25. White, J.C., Hunter, M., Pignatello, J.J., and Alexander, M., 1999. Increase in bioavailability of aged phenanthrene in soils by competitive displacement with pyrene, Environ. Toxicol. Chem., 18(8), 1728-1732. https://doi.org/10.1897/1551-5028(1999) 018<1728>2.3.CO;2
  •  
  • 26. Yang, K., Zhu, L., and Xing, B., 2006, Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials, Environ. Sci. Technol., 40(6), 1855-1861. https://doi.org/10.1021/es052208w
  •  
  • 27. Zhu, M., Yao, J., Dong, L., and Sun, J., 2016, Adsorption of naphthalene from aqueous solution onto fatty acid modified walnut shells, Chemosphere, 144, 1639-1645. https://doi.org/10. 1016/j.chemosphere.2015.10.050
  •  

This Article

  • 2022; 27(6): 11-21

    Published on Dec 31, 2022

  • 10.7857/JSGE.2022.27.6.011
  • Received on Nov 4, 2022
  • Revised on Nov 14, 2022
  • Accepted on Nov 23, 2022

Correspondence to

  • Won Sik Shin
  • School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

  • E-mail: wshin@knu.ac.kr