• Identification of Tetrachloroethylene Sorption Behaviors in Natural Sorbents Via Sorption Models
  • Md Abdullah Al Masud·Jiyeon Choi·Won Sik Shin*

  • School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Akinpelu, A.A., Ali, M.E., Johan, M.R., Saidur, R., Qurban, M.A., and Saleh, T.A., 2019, Polycyclic aromatic hydrocarbons extraction and removal from wastewater by carbon nanotubes: A review of the current technologies, challenges and prospects, Process Saf. Environ. Prot. 122, 68-82. https://doi.org/10.1016/j.psep.2018.11.006
  •  
  • 2. Al-Masud, M.A., Kim, D.G., and Shin, W.S., 2022, Highly efficient degradation of phenolic compounds by Fe(II)-activated dual oxidant (persulfate/calcium peroxide) system, Chemosphere, 299, 134392. https://doi.org/10.1016/j.chemosphere.2022. 134392
  •  
  • 3. Allen-King, R.M., Grathwohl, P., and Ball, W.P., 2002, New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks, Adv. Water Resour., 25(8-12), 985-1016. https://doi.org/10.1016/S0309-1708(02)00045-3
  •  
  • 4. Brusseau, M.L., Schnaar, G., Johnson, G.R., and Russo, A.E., 2012, Nonideal transport of contaminants in heterogeneous porous media: 10. Impact of co-solutes on sorption by porous media with low organic-carbon contents, Chemosphere, 89, 1302-1306. https://doi.org/10.1016/j.chemosphere.2012.05.027
  •  
  • 5. Carmo, A.M., Hundal, L.S., and Thompson, M.L., 2000, Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficients, Environ. Sci. Technol., 34(20), 4363-4369. https://doi.org/10.1021/es000 968v
  •  
  • 6. Chiou, C.T. and Kile, D.E., 1998, Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations, Environ. Sci. Technol. 32(3), 338-343. https://doi.org/10.1021/es970608g
  •  
  • 7. Choi, J. and Shin, W.S., 2020, Removal of salicylic and ibuprofen by hexadecyltrimethylammonium-modified montmorillonite and zeolite, Minerals, 10(10), 898, 1-15. https://doi.org/10. 3390/min10100898
  •  
  • 8. Christensen, E.R., Wang, Y., Huo, J., and Li, A., 2022, Properties and fate and transport of persistent and mobile polar organic water pollutants: A review, J. Environ. Chem. Eng., 10(2), 107201. https://doi.org/10.1016/j.jece.2022.107201
  •  
  • 9. Cornelissen, G., Gustafsson, Ö., Bucheli, T.D., Jonker, M.T.O., Koelmans, A.A., and Van Noort, P.C.M., 2005, Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environ. Sci. Technol., 39(18), 6881-6895. https://doi.org/10.1021/es050191b
  •  
  • 10. Cornelissen, G., Kukulska, Z., Kalaitzidis, S., Christanis, K., and Gustafsson, Ö., 2004, Relations between environmental black carbon sorption and geochemical sorbent characteristics, Environ. Sci. Technol., 38(13), 3632-3640. https://doi.org/10.1021/es0498742
  •  
  • 11. Devore, C.L., Rodriguez-Freire, L., Villa, N., Soleimanifar, M., Gonzalez-Estrella, J., Ali, A.M.S., Lezama-Pacheco, J., Ducheneaux, C., and Cerrato, J.M., 2022, Mobilization of As, Fe, and Mn from contaminated sediment in aerobic and anaerobic conditions: Chemical or microbiological triggers?, ACS Earth Space Chem., 6(7), 1644-1654. https://doi.org/10.1021/acsearthspacechem. 1c00370
  •  
  • 12. Dutta, N., Usman, M., Ashraf, M.A., Luo, G., and Zhang, S., 2022, A critical review of recent advances in the bio-remediation of chlorinated substances by microbial dechlorinators, Chem. Eng. J. Adv., 12, 100359. https://doi.org/10.1016/j.ceja. 2022.100359
  •  
  • 13. Feng, C., Liu, F., Huang, F., Chen, L., and Bi, E., 2023a, Dense nonaqueous phase liquids back diffusion controlled by biodegradation and heterogeneous sorption-desorption, J. Clean. Prod., 382, 135370. https://doi.org/10.1016/j.jclepro.2022.135370
  •  
  • 14. Feng, C., Liu, F., Huang, F., Chen, L., and Bi, E., 2023b, Dense nonaqueous phase liquids back diffusion controlled by biodegradation and heterogeneous sorption-desorption, J. Clean. Prod., 382, 135370. https://doi.org/10.1016/j.jclepro.2022.135370
  •  
  • 15. Kan, A.T., Fu, G., Hunter, M., Chen, W., Ward, C.H., and Tomson, M.B., 1998. Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions, Environ. Sci. Technol., 32(7), 892-902. https://doi.org/10.1021/es9705809
  •  
  • 16. Kan, A.T., Fu, G., Hunter, M.A., and Tomson, M.B., 1997, Irreversible adsorption of naphthalene and tetrachiorobiphenyl to Lula and surrogate sediments, Environ. Sci. Technol., 31(8), 2176-2185. https://doi.org/10.1021/es9601954
  •  
  • 17. Kile, D.E., Wershaw, R.L., and Chiou, C.T., 1999, Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds, Environ. Sci. Technol., 33(12), 2053-2056. https://doi.org/10.1021/es980816o
  •  
  • 18. Kim, J.-H., Shin, W.S., Song, D.-I., and Choi, S.J., 2005, Multi-step competitive sorption and desorption of chlorophenols in surfactant modified montmorillonite, Water. Air. Soil Pollut., 166, 367-380. https://doi.org/10.1007/s11270-005-6329-5
  •  
  • 19. Kleineidam, S., Schüth, C., and Grathwohl, P., 2002, Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants, Environ. Sci. Technol., 36(21), 4689-4697. https://doi.org/10.1021/es010293b
  •  
  • 20. Li, W., Zhu, N., Yuan, H., and Shen, Y., 2021, Influence of sludge organic matter on elimination of polycyclic aromatic hydrocarbons (PAHs) from waste activated sludge by ozonation: Controversy over aromatic compounds, Sci. Total Environ., 797, 149232. https://doi.org/10.1016/j.scitotenv.2021.149232
  •  
  • 21. Liu, S., Yan, E.Z., Turyk, M.E., Katta, S.S., Rasti, A.F., Lee, J.H., Alajlouni, M., Wallace, T.E., Catt, W., and Aikins, E.A., 2022, A pilot study characterizing tetrachloroethylene exposure with exhaled breath in an impacted community, Environ. Pollut., 297, 118756. https://doi.org/10.1016/j.envpol.2021.118756
  •  
  • 22. Masud, M.A. Al, Kim, D.G., and Shin, W.S., 2022, Degradation of phenol using Fe(II)-activated CaO2: effect of ball-milled activated carbon (ACBM) addition, Environ. Res., 214, 113882. https://doi.org/10.1016/j.envres.2022.113882
  •  
  • 23. Masud M. A. A., and Shin W. S. 2022, Single and binary competitive sorption of phenanthrene and pyrene in natural and syntheic sorbents, J. Soil Groundwater Environ., 27(6), 11-21. https://doi.org/10.7857/JSGE.2022.27.6.011
  •  
  • 24. Masud, M.A. Al, Shin, W.S., and Kim, D.G., 2023, Degradation of phenol by ball-milled activated carbon (ACBM) activated dual oxidant (persulfate/calcium peroxide) system: Effect of preadsorption and sequential injection, Chemosphere, 312, 137120. https://doi.org/10.1016/j.chemosphere.2022.137120
  •  
  • 25. Özcan, A., Öncü, E.M., and Özcan, A.S., 2006, Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite, Colloids Surfaces A Physicochem. Eng. Asp., 277, 90-97. https://doi.org/10. 1016/j.colsurfa.2005.11.017
  •  
  • 26. Prajapati, A., Narayan Vaidya, A., and Kumar, A.R., 2022, Microplastic properties and their interaction with hydrophobic organic contaminants: a review, Environ. Sci. Pollut. Res., 29, 49490-49512. https://doi.org/10.1007/s11356-022-20723-y
  •  
  • 27. Qi, S., 2004, Comment on ¡°Sorption nonlinearity for organic contaminants with diesel soot: Method development and isotherm interpretation¡±, Environ. Sci. Technol., 38(20), 5485. https://doi.org/10. 1021/es0404771
  •  
  • 28. Ran, Y., Xing, B., Rao, P.S.C., and Fu, J., 2004, Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate, Environ. Sci. Technol., 38(16), 4340-4348. https://doi.org/10.1021/es035168+
  •  
  • 29. Rani, C.N. and Karthikeyan, S., 2021, Synergic effects on degradation of a mixture of polycyclic aromatic hydrocarbons in a UV slurry photocatalytic membrane reactor and its cost estimation, Chem. Eng. Process. - Process Intensif., 159, 108179. https://doi.org/10.1016/j.cep.2020.108179
  •  
  • 30. Sekar, A., Varghese, G.K., and Varma, R., 2022, Exposure to volatile organic compounds and associated health risk among workers in lignite mines, Int. J. Environ. Sci. Technol., https://doi.org/10.1007/s13762-022-04056-4
  •  
  • 31. Shin, W.S. and Song, D.I., 2005, Solubility-normalized Freundlich isotherm for the prediction of sorption of phenols in HDTMA modified montmorillonite, Geosci. J., 9, 249-259. https://doi.org/10.1007/BF02910585
  •  
  • 32. Xiao, B. and Huang, W., 2011, The equilibria of bisolute sorption on soil, Chemosphere, 83(7), 1005-1013. https://doi.org/10. 1016/j.chemosphere.2011.02.009
  •  
  • 33. Yin, X., Hua, H., Dyer, J., Landis, R., Fennell, D., and Axe, L., 2023, Degradation of chlorinated solvents with reactive iron minerals in subsurface sediments from redox transition zones, J. Hazard. Mater., 445, 130470. https://doi.org/10.1016/j.jhazmat. 2022. 130470
  •  

This Article

  • 2022; 27(6): 47-57

    Published on Dec 31, 2022

  • 10.7857/JSGE.2022.27.6.047
  • Received on Dec 6, 2022
  • Revised on Dec 16, 2022
  • Accepted on Dec 21, 2022

Correspondence to

  • Won Sik Shin
  • School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

  • E-mail: wshin@knu.ac.kr