• Sustainable Soil and Groundwater Management: Concepts, Current Research Trends, and Future Perspectives
  • Eunhee Lee1·Kitae Baek2·Eun Hea Jho3·Yongju Choi4,5*

  • 1Korea Institute of Geoscience and Mineral Resources
    2Department of Environmental Engineering, Jeonbuk National University
    3Department of Agricultural and Biological Chemistry, Chonnam National University
    4Department of Civil and Environmental Engineering, Seoul National University
    5Institute of Construction and Environmental Engineering, Seoul National University

  • 지속 가능 토양 지하수 관리: 개념, 연구동향, 미래전망
  • 이은희1·백기태2·조은혜3·최용주4,5*

  • 1한국지질자원연구원 지하수환경연구센터
    2전북대학교 토목/환경/자원·에너지공학부(환경공학)
    3전남대학교 농생명화학과
    4서울대학교 건설환경공학부
    5서울대학교 건설환경종합연구소

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Arshad, J., Aziz, M., Al-Huqail, A.A., Zaman, M.H.U., Husnain, M., Rehman, A.U., and Shafiq, M., 2022, Implementation of a LoRaWAN based smart agriculture decision support system for optimum crop yield, Sustainability, 14(2), 827.
  •  
  • 2. Boer, B., 2010, Law for sustainable soils: International and national aspects, Glasnik Srpskog geografskog drustva, 90(4), 1-8.
  •  
  • 3. Cayuela, C.M.F., Perea, R.G., Poyato, E.C., and Montesinos, P., 2022, An ICT-based decision support system for precision irrigation management in outdoor orange and greenhouse tomato crops, Agr. Water Manage., 269, 107686.
  •  
  • 4. Charles F. P., 2016, Predicted Impacts of Climate Change on Groundwater Resources of Washington State, Department of Ecology, State of Washington Publication No. 16-03-006, WA, USA.
  •  
  • 5. Chen, Q., Li, L., Chong, C., and Wang, X., 2022, AI‐enhanced soil management and smart farming, Soil Use Manage., 38(1), 7-13.
  •  
  • 6. Cho, H.M. and Yoon, C.R., 2020, Strategies for increasing the Use of Hydrothermal Energy in Seoul Metropolitan City, The Seoul Institute, Seoul, Republic of Korea.
  •  
  • 7. Cho, J.S., 2011, Life cycle assessment on pump and treatment remediation of contaminated groundwater, J. Korean Soc. Environ. Eng.,33(6), 405-412.
  •  
  • 8. Colby, M.E., 1991, Environmental management in development: The evolution of paradigms, Ecological Economics, 3(3), 193-213.
  •  
  • 9. Costanza, R. Kubiszewski, I., Pickett, K. Trebeck, K. De Vogli, R., Ragnarsdóttir, R. V., Lovins, H., Fioramonti, L., Giovannini, E., McGlade, J., Mortensen, L. F., Roberts, D., Wallis, S., and Wilkinson, R., 2020, After the crisis: Two possible futures. Solutions, 11(3).
  •  
  • 10. Daigger, G.T. and Crawford, G.V., 2007, Enhancing water system security and sustainability incorporating centralized and decentralized water reclamation and reuse into urban water management systems, J. Environ. Eng. Manage., 17(1), 1-10.
  •  
  • 11. Dazzi, C., Cornelis, W., Costantini, E.A., Dumitru, M., Fullen, M.A., Gabriels, D., Kasparinskis, R., Kertész, A., Papa, G.L., Pérès, G., Rickson, J., Rubio, J.L., Sholten, T., Theocharopoulos, S., and Vasenevn, I., 2019, The contribution of the European Society for Soil Conservation (ESSC) to scientific knowledge, education and sustainability, Int. Soil Water Conserv. Res., 7(1), 102-107.
  •  
  • 12. Dharumarajan, S., and Hegde, R., 2022, Digital mapping of soil texture classes using Random Forest classification algorithm, Soil Use Manage., 38(1), 135-149.
  •  
  • 13. Ellis, D.E. and Hadley, P.W., 2009, Sustainable remediation white paper – Integrating sustainable principles, practices, and metrics into remediation projects, Remediation, 19(3), 5-114.
  •  
  • 14. Elshall, A.S., Arik, A.D., El-Kadi, A.I., Pierce, S., Ye, M., Burnett, K.M., Wada, C.A., Bremer, L.L., and Chun, G., 2020, Groundwater sustainability: A review of the interactions between science and policy, Environ. Res. Lett., 15, 093004.
  •  
  • 15. EU (European Union), 2020, Circular Economy Action Plan, EU, Brussels, Belgium.
  •  
  • 16. Evans, D.L., Janes‐Bassett, V., Borrelli, P., Chenu, C., Ferreira, C.S., Griffiths, R.I., Kalantari, Z., Keesstra, S., Lal, R., Panagos, P., Robinson, D.A., Seifollahi-Aghmiuni, S., Smith, P., Steenhuis, T.S., Thomas, A., and Visser, S.M., 2022, Sustainable futures over the next decade are rooted in soil science, Eur. J. Soil Sci., 73(1), e13145.
  •  
  • 17. Gatson, L., Lapworth, D.J., Stuart, M., and Arnscheidt, J., 2019, Prioritization approaches for substances of emerging concern in groundwater: A critical review, Environ. Sci. Technol., 53(11), 6107-6122.
  •  
  • 18. Gebremeskel, K., Teka, K., Birhane, E., and Negash, E., 2019, The role of integrated watershed management on soil-health in northern Ethiopia, Acta Agric. Scand. B Soil Plant Sci., 69(8), 667-673.
  •  
  • 19. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S.E.A.T.M., and Ritsema, C.J., 2015, Emerging pollutants in the environment: A challenge for water resource management, Int. Soil Water Conserv. Res., 3(1), 57-65.
  •  
  • 20. Giddings, B., Hopwood, B., and O¡¯Brien, G., 2002, Environment, economy and society: Fitting them together into sustainable development, Sustain. Dev., 10(4), 187-196.
  •  
  • 21. GIMS, 2022, Groundwater in Korea- Statistics, https://www. gims.go.kr, Accessed Sep 8, 2022.
  •  
  • 22. Gleeson, T., Cuthbert, M., Ferguson, G., and Perrone, D., 2020, Global groundwater sustainability, resources, and systems in the Anthropocene, Annu. Rev. Earth Planet. Sci., 48, 431-463.
  •  
  • 23. Goh, C.S., Chong, H.-Y., Jack, L., and Faris, A.F.M., 2020, Revisiting triple bottom line within the context of sustainable construction: A systematic review, J. Clean. Prod., 252, 119884.
  •  
  • 24. Goodland, R., 1995, The concept of environmental sustainability, Annu. Rev. Ecol. Syst., 26, 1-24.
  •  
  • 25. The Government of the Republic of Korea, 2020, Korea 2050 Carbon Neutral Strategy, The Government of the Republic of Korea, Sejong, Republic of Korea.
  •  
  • 26. Hannam, I. and Boer, B., 2004, Drafting Legislation for Sustainable Soils: A Guide (No. 52), IUCN.
  •  
  • 27. Hyun, Y. and Han, H.J., 2021, Groundwater management paradigm shift and policy directions for integrated water management in Korea, J. Soil Groundwater Environ., 26(6), 176-185.
  •  
  • 28. Hyun, Y., Cha, E.J., Lee, G.S., and Jeong, A., 2021, Agricultural Groundwater Management Strategies in Response to Agricultural Pattern Changes in the Era of Climate Crisis, Korea Environment Institute, Sejong, Republic of Korea.
  •  
  • 29. Jeong, S.-W. and Suh, S., 2011, Assessment of environmental impacts and CO2 emission from soil remediation technologies using life cycle assessment - Case studies on SVE and biopile systems. J. Korean Soc. Environ. Eng.,33(4), 267-274.
  •  
  • 30. Jie, C., Jing-Zhang, C., Man-Zhi, T., and Zi-tong, G., 2002, Soil degradation: A global problem endangering sustainable development, J. Geogr. Sci., 12(2), 243-252.
  •  
  • 31. Khalil, U. and Aslam, B., 2022, Geospatial-based soil management analysis using novel technique for better soil conservation, Model. Earth Syst. Environ., 8(1), 259-275.
  •  
  • 32. Kim, D.-H., Choi, J.-H., Kim, L.-Y., Nam, C.-M., and Baek, K., 2012, Economic analysis on desalination technology for saline agricultural land on the basis of crop production, J. Soil Groundwater Environ., 17(5), 40-48.
  •  
  • 33. Kim, D.-H., Hwang, B.-R., Moon, D.-H., Kim, Y.-S., and Baek, K., 2013, Environmental assessment on a soil washing process of a Pb-contaminated shooting range site: a case study, Environ. Sci. Pollut. Res., 20, 8417-8424.
  •  
  • 34. Kim, D.-H., Hwang, B.-R., Her, N., Jeong, S., and Baek, K., 2014a, Environmental impact of soil washing process based on the CO2 emissions and energy consumption, Korean Chem. Eng. Res., 52(1), 119-125.
  •  
  • 35. Kim, D.-H., Yoo, J.-C., Hwang, B.-R., Yang, J.-S., and Baek, K., 2014b, Environmental assessment on electrokinetic remediation of multimetal-contaminated site: a case study, Environ. Sci. Pollut. Res., 21, 6751-6758.
  •  
  • 36. Kim, Y.-S., Lim, H.-S., and Park, J.-W., 2015, Comparison of land farming and chemical oxidation based on environmental footprint analysis, J. Soil Groundwater Environ., 20(3), 7-14.
  •  
  • 37. KIGAM, 2021, Development of Climate Change Adaptation Technologies for Securing and Utilizing Large-Scale Groundwater Resources, Ministry of Science and ICT and KIGAM, Sejong and Daejeon, Republic of Korea.
  •  
  • 38. Kim, J.S., Jun, Y.S., Jun, J.H., and Cho, J.Y., 2021, Transition from linear economy to circular economy, Resour. Recycl., 30(3), 3-17.
  •  
  • 39. Koh, E.H., Lee, S.H., Kaown, D., Moon, H.S., Lee, E., Lee, K.-K., and Kang, B.-R., 2017, Impacts of land use change and groundwater management on long-term nitrate-nitrogen and chloride trends in groundwater of Jeju Island, Korea, Environ. Earth Sci., 76, 176.
  •  
  • 40. KOSIS, 2022, Korean statistical information service: Renewable energy production, https://kosis.kr/statHtml/statHtml.do? orgId=337&tblId=DT_337N_A001, Accessed Sep 25, 2022.
  •  
  • 41. Kumar, V., Singh, A.K., Jat, S.L., Parihar, C.M., Pooniya, V., Sharma, S., and Singh, B., 2014, Influence of site-specific nutrient management on growth and yield of maize (Zea mays) under conservation tillage, Indian J. Agron., 59(4), 657-660.
  •  
  • 42. Lal, R., 2015, Restoring soil quality to mitigate soil degradation, Sustainability, 7(5), 5875-5895.
  •  
  • 43. Langridge, R. and Fencl, A., 2020, Implications of climate change to groundwater, Encyclopedia of the World's Biomes, 2020, 438-453.
  •  
  • 44. Lee, C.H., 1915, The determination of safe yield of underground reservoirs of the closed-basin type, Trans. Am. Soc. Civil Eng., 78(1), 148-218.
  •  
  • 45. Lee, S.M. and Yoon, H.M., 2019, Usage status of groundwater seepage from underground space and utilization strategy for Seoul Metropolitan City, The Seoul Institute, Seoul, Republic of Korea.
  •  
  • 46. Limpert, K.E., Carnell, P.E., Trevathan-Tackett, S.M., and Macreadie, P.I., 2020, Reducing Emissions From Degraded Floodplain Wetlands, Front. Environ. Sci., 8, 8.
  •  
  • 47. Löbmann, M.T., Maring, L., Prokop, G., Brils, J., Bender, J., Bispo, A., and Helming, K., 2022, Systems knowledge for sustainable soil and land management, Sci. Total Environ., 822, 153389.
  •  
  • 48. Maes, J. and Jacobs, S., 2017, Nature-based solutions for Europe¡¯s sustainable development, Conserv. Lett., 10(1), 121-124.
  •  
  • 49. Mekonnen, M., Abeje, T., and Addisu, S., 2021, Integrated watershed management on soil quality, crop productivity and climate change adaptation, dry highland of Northeast Ethiopia, Agric. Syst., 186, 102964.
  •  
  • 50. Ministry of Environment, 2022, 2021 Water supply statistics, https://www.water.or.kr/, Accessed Aug 15, 2022.
  •  
  • 51. Mohammed, S., Alsafadi, K., Ali, H., Mousavi, S.M.N., Kiwan, S., Hennawi, S., Harsanyie, E., Pham, Q.B., Linh, N.T.T., Ali, R., and Anh, D.T., and Thai, V.N., 2022, Assessment of land suitability potentials for winter wheat cultivation by using a multi criteria decision Support-Geographic information system (MCDS-GIS) approach in Al-Yarmouk Basin (S syria), Geocarto Int., 37(6), 1645-1663.
  •  
  • 52. Moldan, B., Janoušková, S., and Hák, T., 2012, How to understand and measure environmental sustainability: Indicators and targets, Ecol. Indic., 17, 4-13.
  •  
  • 53. Montanarella, L. and Vargas, R., 2012, Global governance of soil resources as a necessary condition for sustainable development, Curr. Opin. Environ. Sustain., 4(5), 559-564.
  •  
  • 54. Moon, J.Y., Park, Y.S., Na, S.K., Lee, S.H., and Kim, E.M., 2021, Global trend on circular economy and Korea¡¯s challenges, The Korea Institute for International Economic Policy, Sejong, Republic of Korea.
  •  
  • 55. Morelli, J., 2011, Environmental sustainability: A definition for environmental professionals, J. Environ. Sustain., 1(1), 1-9.
  •  
  • 56. Moshood, T.D., Nawanir, G., and Mahmud, F., 2022, Sustainability of biodegradable plastics: A review on social, economic, and environmental factors, Crit. Rev. Biotechnol., 42(6), 892-912.
  •  
  • 57. Nghiem, L.D., Koch, K., Bolzonella, D., and Drewes, J.E., 2017, Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities, Renew. Sustain. Energy Rev., 72, 354-362.
  •  
  • 58. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P., and Rahmanň, M., 1998, Arsenic poisoning of Bangladesh groundwater, Nature, 395, 338.
  •  
  • 59. OECD (Organisation for Economic Co-operation and Development), 2001, OECD Environmental Strategy for the First Decade of the 21st Century, OECD, Paris, France.
  •  
  • 60. Powlson, D.S., Whitmore, A.P., abd Goulding, K.W., 2011, Soil carbon sequestration to mitigate climate change: A critical re‐examination to identify the true and the false, Eur. J. Soil Sci., 62(1), 42-55.
  •  
  • 61. Purvis, B., Mao, Y., and Robinson, D., 2019, Three pillars of sustainability: In search of conceptual origins, Sustain. Sci., 14, 681-695.
  •  
  • 62. Ramachandrappa, B.K., Sathish, A., Dhanapal, G.N., Shankar, M.A., and Babu, P.N., 2015, Moisture conservation and site specific nutrient management for enhancing productivity in rainfed finger millet+ pigeonpea intercropping system in Alfisols of south India, Indian J. Soil Conserv., 43(1), 72-78.
  •  
  • 63. Rathi, B.S., Kumar, P.S., and Show, P., 2021, A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research, J. Hazard. Mater., 409, 124413.
  •  
  • 64. Romano, O. and Cecchi, L., 2020, Water and the circular economy in cities: Observations and ways forward, Shin, E., Choi, S.H., Makarigakis, A.K., Sohn, O., Clench, C., and Trudeau, Water Reuse within a Circular Economy, UNESCO & UNESCO i-WSSM, Paris, France & Daejeon, Republic of Korea.
  •  
  • 65. Rosenfeld, P.E., and Feng, L.G.H., 2011, Risks of hazardous wastes, Elsevier, Amsterdam, the Netherlands.
  •  
  • 66. Seth, M., Manuja, S., and Singh, S., 2020, Effect of tillage and site specific nutrient management on yield, nutrient uptake and status of soil in wheat in rice-wheat cropping system, J. Crop Weed, 16(3), 32-37.
  •  
  • 67. Simon, J.A., 2017, Editor¡¯s perspective – Identifying products for green and sustainable remediation projects, Remediation, 27(2), 3-8.
  •  
  • 68. Slenders, H.L.A., Bakker, L., Bardos, P., Verburg, R., Alphenaar, A., Darmendrail, D., Nadebaum, P., 2017, There are more than three reasons to consider sustainable remediation, a Dutch perspective, Remediation, 27(2), 77-97.
  •  
  • 69. Stefanidis, K., 2021, Current trends, gaps, and future prospects in e-flow science: Allocating environmental water needs under a changing world, In: Environmental water requirements in mountainous areas (Eds by Dimitriou E and Papadaki C), 201-234, Elsevier, Amsterdam, the Netherlands.
  •  
  • 70. Song S.H., 2015, Effect of drought on the decrease in agricultural groundwater. Mag. Korean Soc. Agric. Eng., 57(4), 25-30.
  •  
  • 71. Thampapillai, D.J. and Anderson, J.R., 1994, A review of the socio-economic analysis of soil degradation problems for developed and developing countries, Rev. Market. Agric. Econ., 62(3), 291-315.
  •  
  • 72. Tóth, G., Hermann, T., da Silva, M.R., and Montanarella, L., 2018, Monitoring soil for sustainable development and land degradation neutrality, Environ. Monit. Assess., 190(27).
  •  
  • 73. UN (United Nations), 2022a, The Sustainable Development Agenda, available at https://www.un.org/sustainabledevelopment/development-agenda, accessed Sep 20, 2022.
  •  
  • 74. UN (United Nations), 2022b, Universal declaration of human rights, https://www.un.org/en/about-us/universal-declaration-of-human-rights, Accessed Aug 14, 2022.
  •  
  • 75. UN (United Nations), 2022c, Measuring progress towards the sustainable development goals, https://sdg-tracker.org/water-and-sanitation, Accessed Aug 14, 2022.
  •  
  • 76. UNFCCC (United Nations Framework Convention on Climate Change) 2015, The Paris Agreement, UN, New York, USA.
  •  
  • 77. United Nations Industrial Development Organization (UNIDO), 2019, Circular economy and the Montreal protocol division, UNIDO, Vienna, Austria.
  •  
  • 78. USEPA (U.S. Environmental Protection Agency), 2017, Potable reuse compendium, EPA/810/R-17/002, Washington, D.C., USA.
  •  
  • 79. Wielemaker, R.C., Weijma, J., and Zeeman, G., 2018, Harvest to Harvest: Recovering Nutrients with New Sanitation Systems for Reuse in Urban Agriculture, Resour. Conserv. Recycl., 128, 426-437.
  •  
  • 80. Zheng, Z.-J., Lin, M.-Y., Chiueh, P.-T., and Lo, S.-L., 2019, Framework for determining optimal strategy for sustainable remediation of contaminated sediment: A case study in Northern Taiwan, Sci. Total Environ., 654, 822-831.
  •  
  • 81. Zimmerman, J.B., Anastas, P.T., Erythropel, H.C., and Leitner, W., 2020, Designing for a green chemistry future, Science, 367(6476), 397-400.
  •  
  • 82. Žížala, D., Minařík, R., Skála, J., Beitlerová, H., Juřicová, A., Rojas, J.R., Penížek, V., and Zádorová, T., 2022, High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic, Catena, 212, 106024.
  •  

This Article

  • 2023; 28(S1): 1-17

    Published on Jan 31, 2023

  • 10.7857/JSGE.2023.28.S.001
  • Received on Oct 10, 2022
  • Revised on Oct 17, 2022
  • Accepted on Oct 27, 2022

Correspondence to

  • Yongju Choi
  • 4Department of Civil and Environmental Engineering, Seoul National University
    5Institute of Construction and Environmental Engineering, Seoul National University

  • E-mail: ychoi81@snu.ac.kr