• Achieving Carbon Neutrality: Technology Innovations and Research Needs in the Division of Groundwater and Soil
  • Jongbok Choi1·Younggyu Son1·Young-Soo Han2·Man Jae Kwon3·Seunghak Lee4·Kitae Baek5·Yongseok Hong6*

  • 1Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
    2Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Korea
    3Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Korea
    4Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
    5School of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, Jeonju 54896, Korea
    6Department of Environmental Systems Engineering, Korea University Sejong Campus, Sejong 30019, Korea

  • 탄소중립 달성을 위한 지하수토양분야 혁신기술 및 선도연구 소개
  • 최종복1·손영규1·한영수2·권만재3·이승학4·백기태5·홍용석6*

  • 1금오공과대학교 환경공학과
    2충남대학교 환경공학과
    3고려대학교 지구환경과학과
    4한국과학기술연구원 물자원순환연구단
    5전북대학교 토목환경자원에너지공학부
    6고려대학교 환경시스템공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Akono, A.T., Druhan, J.L, Davila, G., Tsotsis, T., Jessen, K., Fuchs, S., Crandall, D., Shi, Z., Dalton, L., Tkach, M.K., Goodman, A.L., Frailey, S., and Werth, C.J., 2019, A review of geochemical-mechanical impacts in geological carbon storage reservoirs, Greenh. Gases: Sci. Technol., 9(3), 474-504.
  •  
  • 2. Aminu, M.D., Nabavi, S., Rochelle, C.A., and Manovic, V., 2017, A review of developments in carbon dioxide storage, Appl. Energy, 208, 1389-1419.
  •  
  • 3. Basille-Doelsch, I., Balesdent, J., and Pellerin, S., 2020, Reviews and syntheses: The mechanisms underlying carbon storage in soil, Biogeosienes, 17, 5223-5242.
  •  
  • 4. Benson, S.M. and Cole, D.R., 2008, CO2 sequestration in deep sedimentary formations. Elements, 4(5), 325-331.
  •  
  • 5. Bonte, M., Stuyfzand, P.J., and Breukelen, B.M., 2014, Reactive transport modeling of thermal column experiments to investigate the impacts of aquifer thermal energy storage on groundwater quality, Environ. Sci. Tech., 48(20), 12099-12107.
  •  
  • 6. Burnside, N.M., Shipton, Z.K., Dockrill, B., and Ellam, R.M., 2013, Man-made versus natural CO2 leakage: A 400 k.y. history of an analogue for engineered geological storage of CO2, Geology, 41(4), 471-474.
  •  
  • 7. Chaopricha, N.T. and Marin-Spiotta, E., 2014, Soil burial contributes to deep soil organic carbon storage, Soil Biol. Biochem., 69, 251-264.
  •  
  • 8. Choi, B., Park, J., Ham, B., Kirk, M.F., and Kwon, M.J., 2022, Effect of CO2 on biogeochemical reactions and microbial community composition in bioreactors with deep groundwater and basalt, Sci. Total Environ., 807, 150803.
  •  
  • 9. Choi, H., Lee, H.J., and Shim, B.O., 2021. The influences of aquifer thermal energy storage (ATES) system on geochemical properties of groundwater. J. Soil Groundw. Environ., 26(3), 14-24.
  •  
  • 10. Davison, E.A. and Janssens, I.A., 2006, Temperature sensitivity of soil carbon decompostion and feedbacks to climate change, Nature, 440, 165-173.
  •  
  • 11. Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S, da Silva Dias, P.L., Wofsy, S.C., and Zhang, X., 2007, Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  •  
  • 12. Gerlach, T., 2011, Volcanic versus anthropogenic carbon dioxide, Eos, Transactions American Geophysical Union, 92(24), 201-202.
  •  
  • 13. Global CCS Institute, 2022, Global Status of CCS 2021, Australia
  •  
  • 14. Ham, B., Choi, B.Y., Chae, G.T., Kirk, M.F., and Kwon, M.J., 2017, Geochemical influence on microbial communities at CO2-leakage analog sites, Front. Microbiol., 8, 2203.
  •  
  • 15. Han, K., Rhee, C.H., and Chun, H.D., 2011, Feasibility of mineral carbonation technology as a CO2 storage measure considering domestic industrial environment, Korean Chem. Eng. Res., 49(2), 137-150.
  •  
  • 16. Hou, D. and O'Connor, D., 2020, Chapter 2 - Green and sustainable remediation: past, present, and future developments, In: D. Hou (Ed.), Sustainable Remediation of Contaminated Soil and Groundwater, Butterworth-Heinemann, 2020, p.19-42.
  •  
  • 17. Hwang, S. and Cho, H., 2009, Basic research for the introduction of green remediation best management practices, Korea Environment Institute.
  •  
  • 18. IPCC, 2007, Fourth assessment report: climate change 2007, Intergovernmental Panel on Climate Change.
  •  
  • 19. ITRC, 2021, Sustainable Resilient Remediation SRR-1. Washington, D.C.: Interstate Technology & Regulatory Council, SRR Team. https://srr-1.itrcweb.org [accessed 22.10.16.]
  •  
  • 20. Jackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M.G., and Pineiro, G., 2017, The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls, Annu. Rev. Ecol. Evol. Syst., 48, 419-445.
  •  
  • 21. Kim, D.Y. and Lee, C.H., 2005, Soil Carbon Storages and Preventing Global Warming, Korea Institute of Science and Technology Information.
  •  
  • 22. Kim, J.S., Cha, J.H., Song, S.H., and Jeong, G.C., 2014. Numerical simulations for optimal utilization of geothermal energy under groundwater-bearing conditions, J. Eng. Geol., 24(4), 487-499.
  •  
  • 23. Kim, J.S., Song, S.H., Jeong, G.C., and Cha, J.H., 2015. Analysis of economic feasibility and reductions of carbon dioxide emission of geothermal heating and cooling system using groundwater. J. Eng. Geol., 25(4), 599-612.
  •  
  • 24. Krajewska, B., 2018, Urease-aided calcium carbonate mineralization for engineering applications: A review, J. Adv. Res., 13, 59-67.
  •  
  • 25. Kwon, M.J., O¡¯Loughlin, E.J., Boyanov, M.I., Brulc, J.M., Johnston, E.R., Kemner, K.M., and Antonopoulos, D.A., 2016, Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS ONE, 11(1), e0146689.
  •  
  • 26. Kwon, Y.K., 2021, Comprehensive evaluation of CO2 geological storage prospect and capacity in Korea. Conference of The Korea Organization Promoting for CCUS Development (K-CCUS), Seoul, November 3.
  •  
  • 27. Lee, H.S., 2012, Environmental assessment and environment-friendly using plan of geothermal energy, Korea Environment Institute.
  •  
  • 28. Lee, K.K., 2017, Final report on fusion energy utilization technology in the waterside groundwater, Ministry of Land, Infrastructure, and Transport.
  •  
  • 29. Lehmann, J., 2007, A handful of carbon, Nautre, 447, 143-144.
  •  
  • 30. Leifeld, J. and Fuhrer, J., 2010, Organic farming and soil carbon sequestration: What do we really know about the benefits?, Ambio, 39(8), 585-599.
  •  
  • 31. Liang, C., Schimel, J.P., and Jastrow, J.D., 2017, The importance of anabolism in microbial control over soil carbon storage, Nat. Microbiol., 2, 17105.
  •  
  • 32. Marris, E., 2006, Black is the new green, Nature, 442, 624-626.
  •  
  • 33. Mazzola, V., Perks, M. P., Smith, J., Yeluripati, J., and Xenakis, G., 2022, Assessing soil carbon dioxide and methane fluxes from a scots pine raised bog-edge-woodland, J. Environ. Manage., 302, 114061.
  •  
  • 34. Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B., Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, B.G., Mulder, V.L., O'Rourke, S., Richer-de-Forges, A.C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaemans, Y., Tsui, C.C., Vågen, T.G., van Wesemael, B., and Winowieckit, L., 2017, Soil carbon 4 per mille, Geoderma, 292, 59-86.
  •  
  • 35. Moseman, A., 2022, Ask MIT climate: How much carbon dioxide does the Earth naturally absorb? Climate Portal, Massachusetts Institute of Technology, https://climate.mit.edu/ask-mit/how-much-carbon-dioxide-does-earth-naturally-absorb [accessed 22.09.03.]
  •  
  • 36. Nielbock, M., 2018, Transforming water into acid¡¦ and back, AstroEDU, 4, 1634.
  •  
  • 37. Oh, M.S. and Choi, J.M., 2012, Study on the performance of an ATES geothermal heat pump system and economic analysis, Korean J. Air-Cond. Refrig. Eng., 24(4), 289-296.
  •  
  • 38. Park, Y., Mok, J.K., Jang, B.J., Lee, J.Y., and Park, Y.C., 2015, Influence of closed loop ground source heat pumps on groundwater: a case study, J. Geol. Soc., 51(2), 243-251.
  •  
  • 39. Ripple, W.J., Wolf, C., Newsome, T.M., Gregg, J.W., Lenton, T.M., Palomo, I., Eikelboom, J.A.J., Law, B.E., Huq, S., Duffy, P.B., and Rockström, J., 2021, World scientists¡¯ warning of a climate emergency 2021, BioScience, 71(9), 894-898.
  •  
  • 40. Park, Y.J., 2016, Carbon dioxide storage and utilization using mineral carbonation, NICE, 34(3), 282-286.
  •  
  • 41. Poore, J. and Nemecek, T., 2018, Reducing food¡¯s environmental impacts through producers and consumers, Science, 360, 987-992.
  •  
  • 42. Power, I.M., Wilson, S.A., and Dipple, G.M., 2013, Serpentinite carbonation for CO2 sequestration, Elements, 9(2), 115-121.
  •  
  • 43. Rice, C.W., 2005, Carbon cycle in soils-dynamics and management, Ency. Soil Environ., 1, 164-170.
  •  
  • 44. Salek, S.S., Kleerebezem, R., Jonkers, H.M., Witkamp, G., and van Loosdrecht, M.C., 2013, Mineral CO2 sequestration by environmental biotechnological processes, Trends Biotechnol., 31(3), 139-146.
  •  
  • 45. Six, J., Conant, R. T., Paul, E. A., and Paustian, K., 2002, Stabilization mechanisms of soil organic matter: implications for C-saturation of soils, Plant Soil, 241(2), 155-176.
  •  
  • 46. Sn©¡björnsdóttir, S.Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gíslason, S.R., and Oelkers, E.H., 2020, Carbon dioxide storage through mineral carbonation, Nat. Rev. Earth Environ., 1, 90-102.
  •  
  • 47. The carbon cycle, https://earthobservatory.nasa.gov/features/CarbonCycle [accessed 22.11.06]
  •  
  • 48. Tutolo, B.M., Awolayo, A.N., and Brown, C., 2021, Alkalinity generation constraints on basalt carbonation for carbon dioxide removal at the gigaton-per-year scale, Environ. Sci. Technol., 55(17), 11906-11915.
  •  
  • 49. University of Michigan (Center for Sustainable Systems), 2021, Greenhouse gases factsheet, Pub. No. CSS05-21.
  •  
  • 50. U.S. DOE., 2008, Carbon cycling and biosequestration: Integrating biology and climate through systems science; report from the march 2008 workshop, U.S. Department of Energy Office of Science, DOE/SC-108.
  •  
  • 51. U.S. Geological Survey, 2014, Volcanic gases can be harmful to health, vegetation and infrastructure, http://volcanoes.usgs.gov/hazards/gas/climate.php [accessed 22.08.31]
  •  
  • 52. USEPA, 1996, Basics of green chemistry, https://www.epa.gov/greenchemistry, [accessed 22.08.31]
  •  
  • 53. USEPA, 2008, Green remediation: incorporating sustainable environmental practices into remediation of contaminated sites.
  •  
  • 54. USEPA, 2012, Methodology for understanding and reducing a project¡¯s environmental footprint.
  •  
  • 55. Van Lith, Y., Warthmann, R.J., Vasconcelos, C., and Mckenzie, J.A., 2003, Sulphate‐reducing bacteria induce low‐temperature Ca‐dolomite and high Mg‐calcite formation, Geobiology, 1(1), 71-79.
  •  
  • 56. Wang, B., Pan, Z., Cheng, H., Zhang, Z., and Cheng, F., 2021, A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum, J. Clean. Prod., 302, 126930.
  •  
  • 57. Wang, F., Harindintwali, J.D., Yuan, Z., Wang, M., Wang, F., Li, S., Yin, Z. Huang, L., Fu, Y., Li, L., Chang, S., Zhang, L., Rinklebe, J., Yuan, Z., Zhu, Q., Xiang, L., Tsang, D., Xu, L., Jiang, X., Liu, J., Wei, N., Kastner, M., Zou, Y., Ok, Y.S., Shen, J., Peng, D., Zhang, W., Barcelo, D., Zhou, Y., Bai, Z., Li, B., Zhang, B., Wei, K., Cao, H., Tan, Z., Zhao, L., He, X., Zheng, J., Bolan, N., Liu, X., Huang, C., Dietmann, S., Luo, M., Sun, N., Gong, J., Gong, Y., Brahushi, F., Zhang, T., Xiao, C., Li, X., Schaffer. A., Tiedje, J.M., and Chen, J.M., 2021, Technologies and perspectives for achieving carbon neutrality, The Innovation, 2(4), 100180.
  •  
  • 58. Warthmann, R.J., Lith, Y.V., Vasconcelos, C., Mckenzie, J.A., and Karpoff, A.M., 2000, Bacterially induced dolomite precipitation in anoxic culture experiments, Geology, 28(12), 1091-1094.
  •  
  • 59. Woo, S.H., 2013, Biochar for soil carbon sequestration, Clean Tech., 19(3), 201-211.
  •  

This Article

  • 2023; 28(S1): 40-54

    Published on Jan 31, 2023

  • 10.7857/JSGE.2023.28.S.040
  • Received on Nov 17, 2022
  • Revised on Dec 13, 2022
  • Accepted on Dec 29, 2022

Correspondence to

  • Yongseok Hong
  • Department of Environmental Systems Engineering, Korea University Sejong Campus, Sejong 30019, Korea

  • E-mail: yongseokhong@korea.ac.kr