• Feasibility Evaluation for Remediation of Groundwater Contaminated with Heavy Metal using Calcium Polysulfide in Homogeneous media
  • Hyeon Woo Go1·Jin Chul Joo2*·Kyoungphile Nam3·Hee Sun Moon4·Sung Hee Yoon3·Dong Hwi Lee1·So Ye Jang2

  • 1Department of Environmental Engineering, Hanbat National University
    2Department of Civil and Environmental Engineering, Hanbat National University
    3Department of Civil and Environmental Engineering, Seoul National University
    4Groundwater Environment Research Center, Climate Change Response Research Division, Korea Institute of Geoscience and Mineral Resources

  • 균질한 매질 내 Calcium polysulfide 주입에 따른 고농도 중금속 오염 지하수 정화 타당성 검토
  • 고현우1·주진철2*·남경필3·문희선4·윤성희3·이동휘1·장소예2

  • 1한밭대학교 환경공학과
    2한밭대학교 건설환경공학과
    3서울대학교 건설환경공학부
    4한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Banks, D., Younger, P.L., Arnesen, R.T., Iversen, E.R., and Banks, S.B., 1997, Mine-water chemistry: the good, the bad and the ugly, Environ. Geology, 32(3), 157-174.
  •  
  • 2. Borgwardt, R.H., Roache, N.F., and Bruce, K.R., 1984, Surface area of calcium oxide and kinetics of calcium sulfide formation, Environ. Prog.; (United States), 3(2).
  •  
  • 3. Cheong, M.C., Jung, Y.W., and Min, J.S., 1998, Geochemical characteristics of mine wastes in abandoned mines in Korea, J. Korean Soc. Soil Groundw. Environ.,71-75.
  •  
  • 4. Choi, H.M. and Lee, J.Y., 2009, Green remediation: choice for low CO2 emission in soil and groundwater remediation, J. Soil Groundw. Environ., 14(1), 11-17.
  •  
  • 5. Chrysochoou, M., Ferreira, D.R., and Johnston, C.P., 2010, Calcium polysulfide treatment of Cr (VI)-contaminated soil, J. Hazard. Mater., 179(1-3), 650-657.
  •  
  • 6. Dahlawi, S.M., and Siddiqui, S., 2017, Calcium polysulphide, its applications and emerging risk of environmental pollution-a review article, Environ. Sci. Pollut. Res., 24(1), 92-102.
  •  
  • 7. Darcy, H., 1856, Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau: Ouvrage terminé par un appendice relatif aux fournitures d'eau de plusieurs villes, au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tôle et de bitumen, 2, V. Dalmont.
  •  
  • 8. EFSA, 2010, Conclusion on the peer review of the pesticide risk assessment of the active substance lime sulfur, J. EFSA, 8(11), 1890
  •  
  • 9. Fruchter, J., 2002, Peer reviewed: In-situ treatment of chromium-contaminated groundwater, Environ. Science & Technology, 36(23), 464A-472A.
  •  
  • 10. Graham, M.C., Farmer, J.G., Anderson, P., Paterson, E., Hillier, S., Lumsdon, D.G., and Bewley, R.J., 2006, Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue, Science of the Total Environ., 364(1-3), 32-44.
  •  
  • 11. Gun, J., Modestov, A.D., Kamyshny, A., Ryzkov, D., Gitis, V., Goifman, A., Lev, O., Hultsch, V., Grischeck, T., and Worch, E., 2004, Electrospray ionization mass spectrometric analysis of aqueous polysulfide solutions, Microchimica Acta, 146(3), 229-237.
  •  
  • 12. Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., and Sengupta, B., 2011, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manag., 92(10), 2355-2388.
  •  
  • 13. Huang, C.Y., Cheng, P.C., Chang, J.H., Wan, Y.C., Hong, X.M., and Cheng, S.F., 2021, Feasibility of remediation lead, nickel, zinc, copper, and cadmium-contaminated groundwater by calcium sulfide, Water, 13(16), 2266.
  •  
  • 14. Hu, S., Li, D., Man, Y., Wen, Y., and Huang, C., 2021, Evaluation of remediation of Cr (VI)-contaminated soils by calcium polysulfide: Long-term stabilization and mechanism studies, Sci. Total Environ., 790, 148140.
  •  
  • 15. Jacobs, J.A., 2001, In situ delivery methods for remediation of hexavalent chromium in soil and groundwater, Geotech. Geol. Eng., St Louis, MO, 5.
  •  
  • 16. Ji, M.K., Yoon, H.S., Ji, E.D., Lee, W.R., Park, Y.T., Yang, J.S., Jeon, B.H., Shim, Y.S., Kang, M.H., and Choi, J.Y., 2010, Development of control technology for acid mine drainage by coating on the surface of pyrite using chemicals, J. Soil Groundw. Environ., 15(4), 46-52.
  •  
  • 17. Joo, J.C., Lee, D.H., Moon, H.S., Chang, S.W., Lee, S.H., Lee, E., and Nam, K., 2020, Sensitivity analysis of hydrodynamic and reaction parameters in gasoline transport conceptual aquifer model based on hydrogeological characteristics of Korea, J. Soil Groundw. Environ., 25(1), 37-52.
  •  
  • 18. Joo, J.C., Shackelford, C.D., Reardon, K.F., and Lee, W.T., 2021, Electromagnetically-vibrated solid-phase microextraction for analysis of aqueous-miscible organic compound transport in soil columns, Chemosphere, 263, 127941.
  •  
  • 19. Jung, M.C., Jung, M.Y., 2006, Evaluation and management method of environmental contamination from abandoned metal mines in Korea, J. Korean Soc. Miner. Energy Resour. Eng., 43(5), 383-394
  •  
  • 20. Kamyshny, A., Gun, J., Rizkov, D., Voitsekovski, T., and Lev, O., 2007, Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization, Environ. Sci. Technol, 41(7), 2395-2400.
  •  
  • 21. Lee, J.U., 2010, In-situ immobilization of heavy metals in contaminated soil using microorganisms, J. Korean Soc. Geoenviron., 11(5), 39-48.
  •  
  • 22. Lee, J.Y., Choi, J.C., Yi, M.J., Kim, J.W., Cheon, J.Y., Choi, Y.K., Choi, M.J., and Lee, K.K., 2005, Potential groundwater contamination with toxic metals in and around an abandoned Zn mine, Korea, Water, Air, and Soil Pollution, 165(1), 167-185.
  •  
  • 23. Lee, K.Y., Lee, Y.J., and Jang, S.S., 2004, Investigation of leakage in waste landfill by tracer test, J. Korean Soc. Geotechnical, 20(4), 49-56.
  •  
  • 24. Lee, K.H., 2009, Analysis and characteristics of heavy metals in mines waste water, Journal of the Speleological Society of Korea, (92), 9-18.
  •  
  • 25. Lee, S.W., Kim, J.J., Park, M.J., Lee, S.H., and Kim, S.O., 2015, Human risk assessment of arsenic and heavy metal contamination and estimation of remediation concentration within abandoned metal mine area, J. Miner. Soc. Korea, 28(4), 309-323.
  •  
  • 26. Levchenko, L.M., Galitskii, A.A., Kosenko, V.V., and Sagidullin, A.K., 2015, Development of semi-industrial synthesis of calcium polysulfide solution and determination of the content of sulfide ions in solution, Russ. J. Appl. Chem., 88(9), 1403-1408.
  •  
  • 27. Li, S., 2014, Innocuous treatment of wastewater containing mercury by polysulfide complex reactions (in Chinese), Focus Polyvinyl Chloride, 42(5), 39-43.
  •  
  • 28. Ogata, A. and Banks, R.B., 1961, A solution of the differential equation of longitudinal dispersion in porous media: fluid movement in earth materials, US Government Printing Office.
  •  
  • 29. Park, D.H., Koo, M.H., and Kim, Y.C., 2015, Hydro-thermal numerical simulation for an artificial recharge test in a fractured rock aquifer, J. Soil Groundw. Environ., 20(1), 65-75.
  •  
  • 30. Song, D.S., Lee, J.U., Ko, I.W., and Ki, K.W., 2007, Study on geochemical behavior of heavy metals by indigenous bacteria in contaminated soil and sediment, Econ. Environ. Geol., 40(5), 575-585.
  •  
  • 31. Soya, K., Mihara, N., Kuchar, D., Kubota, M., Matsuda, H., and Fukuta, T., 2008, Selective sulfidation of copper, zinc and nickel in plating wastewater using calcium sulfide, J. Eng. Technol., 44, 356-360.
  •  
  • 32. Storch, P., Messer, A., Palmer, D., and Pyrih, R., 2002, Pilot test for in situ geochemical fixation of chromium (VI) using calcium polysulfide, In Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds: pts 1a-2b, San Diego, CA, USA: Battelle Press.
  •  
  • 33. Sevougian, S.D., Steefel, C.I., and Yabusaki, S.B., 1994, Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling, Pacific Northwest Lab., Richland, WA (United States).
  •  
  • 34. Tomlin, C.D., 2009, The pesticide manual: a world compendium (No. Ed. 15), British Crop Production Council.
  •  
  • 35. Tu, C., Guan, F., Sun, Y., Guo, P., Liu, Y., Li, L., Scheckel, K.G., and Luo, Y., 2018, Stabilizing effects on a Cd polluted coastal wetland soil using calcium polysulphide, Geoderma, 332, 190-197.
  •  
  • 36. USDA, 2014, Technical Evaluation Report (Lime Sulfur), Pesticide Research Institute for the USDA National Organic Program, USDA, 1-15.
  •  
  • 37. U.S. DOE, 2007, Internet ref. http://www.ibl.gov/ERSP
  •  
  • 38. U.S. EPA, 1999, Field applications of in situ remediation technologies: Permeable reactive barriers, DIANE Publishing.
  •  
  • 39. Verner, J.F., Ramsey, M.H., Helios-Rybicka, E., and Jêdrzejczyk, B., 1996, Heavy metal contamination of soils around a Pb-Zn smelter in Bukowno, Poland, Applied Geochemistry, 11(1-2), 11-16.
  •  
  • 40. Wang, Y.M., Chen, T.C., Yeh, K.J., and Shue, M.F., 2001, Stabilization of an elevated heavy metal contaminated site, J. Hazard. Mater., 88(1), 63-74.
  •  
  • 41. Wu, Q., Wan, R., Li, Q., Mo, W., Liu, J., Zhao, C., and Peng, S., 2022, Transformation of chromium speciation during high hexavalent chromium-contaminated soil remediation by CPS and biostimulation, Agronomy, 12(4), 801.
  •  
  • 42. Yahikozawa, K., Aratani, T., Ito, R., Sudo, T., and Yano, T., 1978, Kinetic studies on the lime sulfurated solution (calcium polysulfide) process for removal of heavy metals from wastewater, Bull. Chem. Soc. Jpn, 51(2), 613-617.
  •  
  • 43. Zhang, T., Wang, T., Wang, W., Liu, B., Li, W., and Liu, Y., 2020, Reduction and stabilization of Cr (VI) in soil by using calcium polysulfide: Catalysis of natural iron oxides, Environmental Research, 190, 109992.
  •  
  • 44. Zhong, L., Qafoku, N.P., Szecsody, J.E., Dresel, P.E., and Zhang, Z.F., 2009, Foam delivery of calcium polysulfide to the vadose zone for chromium (VI) immobilization: A laboratory evaluation, J. Vadose Zone, 8(4), 976-985.
  •  

This Article

  • 2023; 28(1): 1-14

    Published on Feb 28, 2023

  • 10.7857/JSGE.2023.28.1.001
  • Received on Jan 19, 2023
  • Revised on Feb 1, 2023
  • Accepted on Feb 9, 2023

Correspondence to

  • Jin Chul Joo
  • Department of Civil and Environmental Engineering, Hanbat National University

  • E-mail: jincjoo@hanbat.ac.kr