• Trends in Evaluation Techniques for Leaching of Heavy Metals and Nutrients according to Sediment Resuspension in Rivers and Lakes
  • Sang-Gyu Yoon1·Seoyeon Han2·Haewook Kim2·Ihn-Sil Kwak3·Jinsung An1,2*

  • 1Department of Smart City Engineering, Hanyang University, Ansan 15588, South Korea
    2Department of Civil and Environmental Engineering, Hanyang University, Ansan 15588, South Korea
    3Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea

  • 하천 및 호소 내 퇴적물 재부유에 따른 중금속 및 영양염류 용출량 평가기법 동향
  • 윤상규1·한서연2·김해욱2·곽인실3·안진성1,2*

  • 1한양대학교 ERICA 스마트시티공학과
    2한양대학교 ERICA 건설환경공학과
    3전남대학교 해양융합과학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Allen, H.E., Fu, G., and Deng, B., 1993, Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments, Environ. Toxicol. Chem., 12(8), 1441-1453.
  •  
  • 2. Bao, T., Wang, P., Hu, B., Wang, X., and Qian, J., 2023, Mobilization of colloids during sediment resuspension and its effect on the release of heavy metals and dissolved organic matter, Sci. Total Environ., 861, 160678.
  •  
  • 3. Barreto, S.R.G., Nozaki, J., Oliveira, E.D., Filho, V.F.D.N., Aragão, P.H.A., Scarminio, I.S., and Barreto, W.J., 2004, Comparison of metal analysis in sediments using EDXRF and ICP-OES with the HCl and Tessie extraction methods, Talanta, 64(2), 345-354.
  •  
  • 4. Bremner, J.M. and Keeney, D.R., 1966, Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3.exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods, Soil Sci. Soc. Am. J., 30(5), 577-582.
  •  
  • 5. Caetano, M., Madureira, M.-J., and Vale, C., 2003, Metal remobilisation during resuspension of anoxic contaminated sediment: Short-term laboratory study, Water Air Soil Pollut., 143, 23-40.
  •  
  • 6. Cai, C., Zhao, M., Yu, Z., Rong, H., and Zhang, C., 2019, Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review, Sci. Total Environ., 662, 205-217.
  •  
  • 7. Cantwell, M.G., Burgess, R.M., and Kester, D.R., 2002, Release and phase partitioning of metals from anoxic estuarine sediments during periods of simulated resuspension, Environ. Sci. Technol., 36(24), 5328-5334.
  •  
  • 8. Cantwell, M.G. and Burgess, R.M., 2004, Variability of parameters measured during the resuspension of sediments with a particle entrainmnet simulator, Chemosphere, 56(1), 51-58.
  •  
  • 9. Cantwell, M.G., Burgess, R.M., and King, J.W., 2008, Resuspension of contaminated field and formulated reference sediments Part I: Evaluation of metal release under controlled laboratory conditions, Chemosphere, 73(11), 1824-1831.
  •  
  • 10. Cervi, E.C., Hudson, M., Rentschler, A., and Allen Burton Jr., G., 2019, Metal toxicity during short-term sediment resuspension and redeposition in a tropical reservoir, Environ. Toxicol. Chem., 38(7), 1476-1485.
  •  
  • 11. Chanpiwat, P., Ponsin, M., and Numprasanthai, A., 2023, Effects of sediment resuspension and changes in water nutrient concentrations on the remobilization of lead from contaminated sediments in Klity Creek, Thailand, J. Environ. Manage., 339, 117909.
  •  
  • 12. Chao, J.-Y., Zhang, Y.-M., Kong, M., Zhuang, W., Wang, L.-M., Shao, K.-Q., and Gao, G., 2017, Long-term moderate wind induced sedimnet resuspension meeting phosphorus demand of phytoplankton in the large shallow eutrophic Lake Taihu, PloS One, 12(3), e0173477.
  •  
  • 13. Chen, C., Kong, M., Wang, Y.-Y., Shen, Q.-S., Zhong, J.-C., and Fan, C.-X., 2020, Dredging method effects on sediment resuspension and nutrient release across the sediment-water interface in Lake Taihu, China, Environ. Sci. Pollut. Res., 27, 25861-25869.
  •  
  • 14. Chung, E.G., Bombardelli, F.A., and Schladow, S.G., 2009, Sediment resuspension in a shallow lake, Water Resour. Res., 45(5), WR006585.
  •  
  • 15. Coffroy, P., Monnin, L., Garnier, J.-M., Ambrosi, J.-P., and Radakovitch, O., 2019, Modelling geochemical and kinetic processes involved in lead (Pb) remobilization during resuspension events of contaminated sediments, Sci. Total Environ., 679, 159-171.
  •  
  • 16. Cornwell, J.C. and Owens, M.S., 2011, Quantifying sediment nitrogen releases associated with estuarine dredging, Aquat. Geochem., 17, 499-517.
  •  
  • 17. Dang, D.H., Layglon, N., Ferretto, N., Omanović, D., Mullot, J.-U., Lenoble, V., Mounier, S., and Garnier, C., 2020, Kinetic processes of copper and lead remobilization during sediment resuspension of marine polluted sediments, Sci. Total Environ., 698, 134120.
  •  
  • 18. Dapeng, L., Yong, H., Chengxin, F., and Yan, Y., 2011, Contributions of phosphorus on sedimentary phosphorus bioavailability under sediment resuspension conditions, Chem. Eng. J., 168(3), 1049-1054.
  •  
  • 19. Da-Peng, L. and Yong, H., 2010, Sedimentary phosphorus fractions and bioavailability as influenced by repeated sediment resuspension, Ecol. Eng., 36(7), 958-962.
  •  
  • 20. Evans, R.D., 1994, Empirical evidence of the importance of sediment resuspension in lakes, Hydrobiologia, 284, 5-12.
  •  
  • 21. Fan, C.X., Zhang, L., and Qu, W.C., 2001, Lake sediment resuspension and caused phosphate release-a simulation study, J. Environ. Sci., 13(4), 406-410.
  •  
  • 22. Gibson, B.D., Ptacek, C.J., Blowes, D.W., and Daugherty, S.D., 2015, Sediment resuspension under variable geochemical conditions and implications for contaminant release, J. Soils. Sediments, 15, 1644-1656.
  •  
  • 23. Hedley, M.J., Stewart, J.W.B., Chauhan, B.S.C., B.S., 1982, Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations, Soil Sci. Soc. Am. J., 46(5), 970-976.
  •  
  • 24. Hwang, K.-Y., Kim, H.-S., and Hwang, I., 2011, Effect of resuspension on the release of heavy metals and water chemistry in anoxic and oxic sediments, Clean (Weinh), 39(10), 908-915.
  •  
  • 25. ISO/TS 14256-1:2003, 2003, Soil quality-determination of nitrate, nitrite and ammonium in field-moist soils by extraction with potassium chloride solution-part 1: Manual method.
  •  
  • 26. Kachurina, O.M., Zhang, H., Raun, W.R., and Krenzer, E.G., 2008, Simultaneous determination of soil aluminum, ammonium‐ and nitrate‐nitrogen using 1 M potassium chloride extraction, Commun. Soil Sci. Plant Anal., 31(7-8), 893-903.
  •  
  • 27. Kalnejais, L.H., Martin, W.R., and Bothner, M.H., 2010, The release of dissolved nutrients and metals from coastal sedimsents due to resuspension, Mar. Chem., 121(1-4), 224-235.
  •  
  • 28. Kang, M., Tian, Y., Peng, S., and Wang, M., 2019, Effect of dissolved oxygen and nutrient levels on heavy metal contents and fractions in river surface sediments, Sci. Total Environ., 648, 861-870.
  •  
  • 29. Kang, S.G., Lee, H.S., Lim, B.R., Rhee, D.S., and Shin, H.S., 2021, Astudy on the releasing characteristics of organic matter and heavy metals and changes of dissolved oxygen concentration during sediment resuspension, J. Korean Soc. Water Environ., 37(1), 1-9.
  •  
  • 30. Kumkrong, P., Mihai, O., Mercier, P.H.J., Pihilligawa, I.G., Tyo, D.D., and Mester, Z., 2020, Tessier sequential extraction on 17 elements from three marine sediment certified reference materials (HISS-1, MESS-4, and PACS-3), Anal. Bioanal. Chem., 413, 1047-1057.
  •  
  • 31. Liu, Q., Jia, Z., Liu, G., Li, S., and Hu, J., 2023, Assessment of heavy metals remobilization and release risks at the sediment-water interface in estuarine environment, Mar. Pollut. Bull., 187, 114517.
  •  
  • 32. Mahamod, M.T., Wan Mohtar, W.H.M., and Yusoff, S.F.M., 2016, Spatial and temporal behavior of Pb, Cd, and Zn release during short term low intensity resuspension events, J. Teknol., 80(1), 17-25.
  •  
  • 33. Martino, M., Turner, A., Nimmo, M., and Millward, G.E., 2002, Resuspension, reactivity and recycling of trace metals in the Mersey Estuary, UK, Mar. Chem., 77(2-3), 171-186.
  •  
  • 34. Monnin, L., Ciffroy, P., Garnier, J.-M., Ambrosi, J.-P., and Radakovitch, O., 2018, Remobilization of trace metals during laboratory resuspension of contaminated sediments from a dam reservoir, J. Soils Sediments, 18, 2596-2613.
  •  
  • 35. Monte, C.N., Rodrigues, A.P.C., Cordeiro, R.C., Freire, A.S., Santelli, R.E., and Machado, W., 2015, Changes in Cd and Zn bioavailability upon an experimental resuspension of highly contaminated coastal sediments from a tropical estuary, Sustain. Water Resour. Manag., 1, 335-342.
  •  
  • 36. Morin, J. and Morse, J.W., 1999, Ammonium release from resuspended sediments in the Laguna Madre estuary, Mar. Chem., 65(1-2), 97-110.
  •  
  • 37. Orlins, J.J. and Gulliver, J.S., 2003, Turbulence quantification and sediment resuspension in an oscillating grid chamber, Exp. Fluids, 34, 662-677.
  •  
  • 38. Olsen, S.R., 1954, Estimation of available phosphorus in soils by extraction with sodium bicarbonate (NO. 939), US Department of Agriculture.
  •  
  • 39. Pardo, R., Barrado, E., Pẽrez, L., and Vega, M., 1990, Determination and speciation of heavy metals in sediments of the Pisuerga river, Water Res., 24(3), 373-379.
  •  
  • 40. Prica, M., Dalmacija, B., Rončević, S., Krčmar, D., and Bečelić, M., 2008, A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments, Sci. Total Environ., 389(2-3), 235-244.
  •  
  • 41. Rauret, G., 1998, Extraction procedures for the determination of heavy metals in contaminated soil and sediment, Talanta, 46(3), 449-455.
  •  
  • 42. Reddy, K.R., Fisher, M.M., and Ivanoff, D., 1996, Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake, J. Environ. Qual., 25(2), 363-371.
  •  
  • 43. Shi, X., and Zhang, W., 2018, Experimental study on release of heavy metals in sediment under hydrodynamic conditions, IOP Conf. Ser.: Earth Environ. Sci., 208, 012040.
  •  
  • 44. Simpson, S.L., Apte, S.C., and Batley, G.E., 1998, Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments, Environ. Sci. Technol., 32(5), 620-625.
  •  
  • 45. Smith, J.S., Winston, R.J., Tirpak, R.A., Wituszynski, D.M., Boening, K.M., and Martin, J.F., 2020, The seasonality of nutrients and sediment in residential stormwater runoff: Implications for nutrient-sensitive waters, J. Environ. Manage., 276, 111248.
  •  
  • 46. Sundaray, S.K., Nayak, B.B., Lin, S., and Bhatta, D., 2011, Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study: Mahanadi basin, India, J. Hazard. Mater., 186(2-3), 1837-1846.
  •  
  • 47. Sungur, A., Soylak, M., Yilmaz, S., and Özcan, H., 2014, Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method, Environ. Earth. Sci., 72, 3293-3305.
  •  
  • 48. Superville, P.-J., Prygiel, E., Magnier, A., Lesven, L., Gao, Y., Baeyens, W., Ouddane, B., Dumoulin, D., and Billon, G., 2014, Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments, Sci. Total. Environ., 470-471, 600-607.
  •  
  • 49. S©ªndergaard, M., Kristensen, P., and Jeppesen, E., 1992, Phosphorus release from resuspended sediment in the shallow and wind-eposed Lake Arres©ª, Denmark, Hydrobiologia, 228, 91-99.
  •  
  • 50. Tang, C., Li, Y., He, C., and Acharya, K., 2020, Dynamic behavior of sediment resuspension and nutrients release in the shallow and wind-exposed Meiliang Bay of Lake Taihu, Sci. Total Environ., 708, 135131.
  •  
  • 51. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51(7), 844-851.
  •  
  • 52. Tolhurst, T.J., Riethmüller, R., and Paterson, D.M., 2000, In situ versus laboratory analysis of sediment stability from intertidal mudflats, Cont. Shelf Res., 20(10-11), 1317-1334.
  •  
  • 53. Tsai, C.-H. and Lick, W., 1986, A portable device for measuring sediment resuspension, J. Great Lakes Res., 12(4), 314-321.
  •  
  • 54. Wang, J., Xu, J., Xia, J., Wu, F., and Zhang, Y., 2018, A kinetic study of concurrent arsenic adsorption and phosphorus release during sediment resuspension, Chem. Gelo., 495, 67-75.
  •  
  • 55. Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D., and Ding, A., 2018, Review on utilization of biochar for metal-contaminated soil and sediment remediation, J. Environ. Sci., 63, 156-173.
  •  
  • 56. Wang, P., Shen, X., Wang, S., and Hao, S., 2013, Remobilization of phosphorus from sediments of Taihu Lake during periods of simulated resuspension, Water Environ. Res., 85(11), 2209-2215.
  •  
  • 57. Wang, S., Jin, X., Zhao, H., and Wu, F., 2009, Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions, J. Hazard. Mater., 161(2-3), 1551-1559.
  •  
  • 58. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 2001, Arsenic fractionation in soils using and improved sequential extraction procedure, Anal. Chim. Acta, 436(2), 309-323.
  •  
  • 59. Wu, M., Yang, F., Yao, Q., Bouwman, L., and Wang, P., 2020, Storm-induced sediment resuspension in the Chargjiang River Estuary leads to alleviation of phosphorus limitation, Mar. Pollt. Bull., 160, 111628.
  •  
  • 60. Xie, M., Alsina, M.A., Yuen, J., Packman, A.I., and Gaillard, J.-F., 2019, Effects of resuspension on the mobility and chemical speciation of zinc in contaminated sedimnets, J. Hazard. Mater., 364, 300-308.
  •  
  • 61. Xie, M., Wang, N., Gaillard, J.-F., and Packman, A.I., 2016, Hydrodynamic forcing mobilizes Cu in low-permeability estuarine sediment, Environ. Sci. Technol., 50(9), 4615-4623.
  •  
  • 62. Yang, H.J., Jeong, H.J., Bong, K.M., Jin, D.R., Kang, T.-W., Ryu, H.-S., Han, J.H., Yang, W.J., Jung, H., Hwanf, S.H., and Na, E.H., 2020, Organic matter and heavy metal in river sediments of southwestern coastal Korea: Spatial distributions, pollution, and ecological risk assessment, Mar. Pollut. Bull., 159, 111466.
  •  
  • 63. Yin, H., Kong, M., Han, M., and Fan, C., 2016, Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes, Environ. Pollut., 219, 568-579.
  •  
  • 64. Zhang, C., Yu, Z.-G., Zeng, G.-M., Jiang, M., Yang, Z.-Z., Cui, F., Zhu, M.-Y., Shen, L.-Q., and Hu, L., 2014, Effects of sediment geochemical properties on heavy metal bioavailability, Environ. Int., 73, 270-281.
  •  
  • 65. Zhang, J., Wang, K., Yi, Q., Zhang, T., Shi, W., and Zhou, X., 2022a, Transport and partitioning of metals in river network of a plain area with sedimentary resuspension and implications for downstream lakes, Environ. Pollut., 294, 118668.
  •  
  • 66. Zhang, X., Wang, B., Pan, F., Cai, Yu, Wu, X., Liu, H., and Guo, Z., 2022b, Potential pollution assessment of labile trace metals in Xixi River estuary sediments in Xiamen, China, J. Contam. Hydrol., 250, 104055.
  •  
  • 67. Zhang, S., Yi, Q., Buyang, S., Cui, H., Zhang, S., 2020, Enrichment of bioavailable phosphorus in fine particles when sediment resuspension hinders the ecological restoration of shallow eutrophic lakes, Sci. Total Environ., 710, 135672.
  •  
  • 68. Zhu, H., Cheng, P., Zhong, B., and Wang, D., 2014, The mechanisms of contaminants release due to incipient motion at sediment-water interface, Sci. China: Phys. Mech., 57, 1563-1568.
  •  
  • 69. Zhu, Y., Wu, F., He, Z., Guo, J., Qu, X., Xie, F., Giesy, J.P., Liao, and Guo, F., 2013, Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis, Environ. Sci. Technol., 47(14), 7679-7687.
  •  

This Article

  • 2023; 28(5): 1-11

    Published on Oct 31, 2023

  • 10.7857/JSGE.2023.28.5.001
  • Received on Sep 27, 2023
  • Revised on Oct 12, 2023
  • Accepted on Oct 20, 2023

Correspondence to

  • Jinsung An
  • 1Department of Smart City Engineering, Hanyang University, Ansan 15588, South Korea
    2Department of Civil and Environmental Engineering, Hanyang University, Ansan 15588, South Korea

  • E-mail: jsan86@hanyang.ac.kr