• Development of Elemental Technology for the Revitalization of Heavy Metal Contaminated Soil Remediated by Soil Washing
  • Seung-Hyun Lee1·Jong-Hwan Lee1·Woo-Chun Lee2·Sang-Woo Lee2·Soon-Oh Kim1*

  • 1Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju 52828, Korea
    2HS Environmental Technology Research Center, Hosung Inc., Jinju 52818, Korea

  • 중금속 오염 토양의 토양세척 정화 후 토양 건강성 회복을 위한 요소 기술 개발
  • 이승현1·이종환1·이우춘2·이상우2·김순오1*

  • 1경상대학교 지질과학과 및 기초과학연구소(RINS)
    2(주)호성 HS환경기연구소

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Alaboudi, K.A., Ahmed, B., and Brodie, G., 2020, Soil washing technology for removing heavy metals from a contaminated soil: A case study, Polish J. Environ. Stud., 29(2), 1029-1036.
  •  
  • 2. Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amézaga, I., and Garbisu, C., 2003, Soil enzyme activities as biological indicators of soil health, Rev. Environ. Health, 18(1), 65-73.
  •  
  • 3. Altland, J.E. and Jeong, K.Y., 2016, Dolomitic lime amendment affects pine bark substrate pH, nutrient availability, and plant growth: A review, HortTechnology, 26(5), 565-573.
  •  
  • 4. Arthur, E., Cornelis, W.M., Vermang, J., and De Rocker, E., 2011, Amending a loamy sand with three compost types: impact on soil quality, Soil Use and Management, 27(1), 116-123.
  •  
  • 5. Assefa, S. and Tadesse, S., 2019, The principal role of organic fertilizer on soil properties and agricultural productivity-a review, Agri Res and Tech: Open Access J., 22(2), 556192.
  •  
  • 6. Awasthi, G., Nagar, V., Mandzhieva, S., Minkina, T., Sankhla, M.S., Pandit, P.P., Aseri, V., Awasthi, K.K., Rajput, V.D., Bauer, T., and Srivastava, S., 2022, Sustainable amelioration of heavy metals in soil ecosystem: Existing developments to emerging trends, Minerals, 12(1), 85.
  •  
  • 7. Bai, S.H., Reverchon, F., Xu, C.Y., Xu, Z., Blumfield, T.J., Zhao, H., Zwieten, L.V., and Wallace, H.M., 2015, Wood biochar increases nitrogen retention in field settings mainly through abiotic processes, Soil Biology and Biochemistry, 90(1), 232-240.
  •  
  • 8. Bossolani, J.W., Crusciol, C.A.C., Merloti, L.F., Moretti, L.G., Costa, N.R., Tsai, S.M., and Kuramae, E.E., 2020, Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system, Geoderma, 375, 114476.
  •  
  • 9. Chibuike, G.U. and Obiora, S.C., 2014, Heavy metal polluted soils: effect on plants and bioremediation methods, Appl. Environ. Soil Sci., 752708.
  •  
  • 10. Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B., and Kaiser, M., 2020, Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions, Agr. Ecosys. Environ., 295, 106882.
  •  
  • 11. Demir, Z., 2019, Effects of vermicompost on soil physicochemical properties and lettuce (Lactuca sativa Var. Crispa) yield in greenhouse under different soil water regimes, Communications in Soil Science and Plant Analysis, 50(17), 2151-2168.
  •  
  • 12. Dick, W.A., 1984, Influence of long-term tillage and crop rotation combinations on soil enzymes activities, Soil Sci. Soc. Am. J., 48, 569-574.
  •  
  • 13. Dindar, E., Şağban, F.O.T., and Başkaya, H.S., 2015, Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil, Inter. Biodeterioration & Biodegradation, 105, 268-275.
  •  
  • 14. Eivazi, F. and Tabatabai, M.A., 1997, Phosphatases in soils, Soil Biol. Biochem., 9(3), 167-177.
  •  
  • 15. Ekenler, M. and Tabatabai, M.A., 2004, Arylamidase and amidohydrolases in soils as affected by liming and tillage systems, Soil Tillage Res., 77(2), 157-168.
  •  
  • 16. Glaser, B., Wiedner, K., Seelig, S., Schmidt, H.P., and Gerber, H., 2015, Biochar organic fertilizers from natural resources as substitute for mineral fertilizers, Agronomy for Sustainable Development, 35, 667-678.
  •  
  • 17. Higgins, S., Morrison, S., and Watson, C.J., 2012, Effect of annual applications of pelletized dolomitic lime on soil chemical properties and grass productivity, Soil use and Management, 28(1), 62-69.
  •  
  • 18. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., and Beeregowda, K.N., 2014, Toxicity, mechanism and health effects of some heavy metals, Interdiscip Toxicol., 7(2), 60-72.
  •  
  • 19. Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., and Cao, H., 2017, Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China, Chemosphere, 168, 1658-1668.
  •  
  • 20. Kandeler, E. and Gerber, H., 1988, Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils, 6, 68-72.
  •  
  • 21. Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., and Basirat, S., 2012, Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties, Agr. Ecosys. Environ., 148, 22-28.
  •  
  • 22. KATS (Korean Agency for Technology and Standards), 2017, KS F 2302 Standard test method for particle size distribution of soils, 1-18.
  •  
  • 23. Kemper, W.D., Rosenau, R.C., 1986, Aggregate stability and size distribution, In: A. Klute (ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods, American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Madison, WI, USA, p.425-442.
  •  
  • 24. Khorram, M.S., Zhang, G., Fatemi, A., Kiefer, R., Maddah, K., Baqar, M., Zakaria, M. P., and Li, G., 2019, Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a 4‐year field study, J. Sci. Food Agr., 99(4), 1862-1869.
  •  
  • 25. Kranz, C.N., McLaughlin, R.A., Johnson, A., Miller, G., and Heitman, J.L., 2020, The effects of compost incorporation on soil physical properties in urban soils–A concise review, J. Environ. Manag., 261, 110209.
  •  
  • 26. Lee, S.-W., Lee, W.-C., Lee, S.-H., and Kim, S.-O., 2021, Remediation of heavy metal-contaminated soil within a military shooting range through physicochemical treatment, J. Soil Groundwater Environ., 26(5), 9-19.
  •  
  • 27. Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., and Han, W., 2019, A review on heavy metals contamination in soil: effects, sources, and remediation techniques, Soil Sed. Contam.: An Inter. J., 28(4), 380-394.
  •  
  • 28. Liu, J., Zhao, L., Liu, Q., Li, J., Qiao, Z., Sun, P., and Yang, Y., 2022, A critical review on soil washing during soil remediation for heavy metals and organic pollutants, Inter. J. Environ. Sci. Technol., 19(1), 601-624.
  •  
  • 29. Liu, L., Li, W., Song, W., and Guo, M., 2018, Remediation techniques for heavy metal-contaminated soils: Principles and applicability, Sci. total Environ., 633, 206-219.
  •  
  • 30. Muñoz-Rojas, M., 2018, Soil quality indicators: critical tools in ecosystem restoration, Current Opinion in Environmental Science & Health, 5, 47-52.
  •  
  • 31. Nannipieri, P., Grego, S., and Ceccanti, B., 1990, Ecological significance of the biological activity in soil. In: J.M. Bollag and G. Stotzky (ed.), Soil biochemistry, Marcel Dekker, New York, NY, USA, p. 293-355.
  •  
  • 32. NAAS (National Academy of Agricultural Science), 2010, Methods of soil chemical analysis; Rural development administration, Wanju, Korea.
  •  
  • 33. Nannipieri. P., Grego, S., and Ceccanti, B., 1990, Ecological significance of the biological activity in soil, In: J.M. Bollag and G. Stotzky (ed.), Soil biochemistry, Marcel Dekker, New York, p. 293-355.
  •  
  • 34. Neina, D., 2019, The role of soil pH in plant nutrition and soil remediation, Appl. Environ. Soil Sci., 2019, 5794869.
  •  
  • 35. NiFoS (National institute of forest science), 2021, National forest soil acidification status, Research report 21-14, p.29.
  •  
  • 36. Obiri-Nyarko, F., Duah, A.A., Karikari, A.Y., Agyekum, W.A., Manu, E., and Tagoe, R., 2021, Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana: Implication for ecological and health risk assessment, Chemosphere, 282, 131007.
  •  
  • 37. OECD, 2008, OECD guideline for the testing of chemicals, No. 314: Simulation tests to assess the biodegradability of chemicals discharged in wastewater, Organisation for Economic Cooperation and Development (OECD), Paris, France.
  •  
  • 38. Pepper, I.L. and Gerba, C.P., 2004, Environmental microbiology: A laboratory manual, 2nd ed., Elsevier Academic Press, Cambridge, MA, USA.
  •  
  • 39. Pereira, P., Bogunovic, I., Muñoz-Rojas, M., and Brevik, E.C., 2018, Soil ecosystem services, sustainability, valuation and management, Current Opinion in Environmental Science & Health, 5, 7-13.
  •  
  • 40. Puissant, J., Jones, B., Goodall, T., Mang, D., Blaud, A., Gweon, H.S., Malik, A., Jones, D.L., Clark, I.M., Hirsch, P.R., and Griffiths, R., 2019, The pH optimum of soil exoenzymes adapt to long term changes in soil pH, Soil Biology and Biochemistry, 138, 107601.
  •  
  • 41. Raffa, C.M., Chiampo, F., and Shanthakumar, S., 2021, Remediation of metal/metalloid-polluted soils: A short review, Applied Sciences, 11(9), 4134.
  •  
  • 42. RDA (Rural Development Administration), 2022, The investigation of real condition and evaluation criteria on agricultural resources and environments, RDA notification #2022-3, appendix, Table 4.
  •  
  • 43. Serrano, J., Shahidian, S., Marques da Silva, J., Moral, F., Carvajal-Ramirez, F., Carreira, E., Pereira, A., and Carvalho, M.D., 2020, Evaluation of the effect of dolomitic lime application on pastures-Case study in the Montado Mediterranean ecosystem, Sustainability, 12(9), 3758.
  •  
  • 44. Sharma, M.R. and Raju, N.S., 2013, Correlation of heavy metal contamination with soil properties of industrial areas of Mysore, Karnataka, India by cluster analysis, Inter. Res. J. Environ. Sci., 2(10), 22-27.
  •  
  • 45. Shi, W.Y., Shao, H.B., Li, H., Shao, M.A., and Du, S., 2009, Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite, J. Hazard. Mater., 170(1), 1-6.
  •  
  • 46. Sinsabaugh, R.L. and Follstad Shah, J.J., 2012, Ecoenzymatic stoichiometry and ecological theory, Annu. Rev. Ecol. Syst., 43, 313-343.
  •  
  • 47. Skujins, J., 1978, History of abiontic soil enzyme research, In: R.G. Burns (ed.), Soil enzymes, Academic Press, London, UK, p. 1-49.
  •  
  • 48. Stott, D.E., 2019, Recommended soil health indicators and associated laboratory procedures, Soil health technical note No. 450-03, U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA.
  •  
  • 49. USEPA, 1986, Test method 9080, cation-exchange capacity of soils (Ammonium Acetate), Washington, DC, USA.
  •  
  • 50. Wang, L., Rinklebe, J., Tack, F.M., and Hou, D., 2021, A review of green remediation strategies for heavy metal contaminated soil, Soil Use and Management, 37(4), 936-963.
  •  
  • 51. Wienhold, B.J., Andrews, S.S., and Karlen, D.L., 2004, Soil quality: a review of the science and experiences in the USA, Environ. Geochem. Health, 26(2), 89-95.
  •  
  • 52. Xian, Y., Wang, M., and Chen, W., 2015, Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties, Chemosphere, 139, 604-608.
  •  
  • 53. Yang, T. and Hodson, M. E., 2019, Investigating the use of synthetic humic-like acid as a soil washing treatment for metal contaminated soil, Sci. Total Environ., 647, 290-300.
  •  
  • 54. Yi, Y.M. and Sung, K., 2015, Influence of washing treatment on the qualities of heavy metal–contaminated soil, Ecological Engineering, 81, 89-92.
  •  
  • 55. Yun, Y.K., 2017, Investigation and analysis methods for physical properties of soil, Rural Development Administration, National Academy of Agricultural Science, Seoul, Korea.
  •  
  • 56. Zhai, X., Li, Z., Huang, B., Luo, N., Huang, M., Zhang, Q., and Zeng, G., 2018, Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization, Sci. Total Environ., 635, 92-99.
  •  
  • 57. Zhang, H., Xu, Y., Kanyerere, T., Wang, Y.S., and Sun, M., 2022, Washing reagents for remediating heavy-metal-contaminated soil: a review, Front. Earth Sci., 10, 901570.
  •  
  • 58. Zhu, H., Yang, J., Yao, R., Wang, X., Xie, W., Zhu, W., Liu, X., Cao, Y., and Tao, J., 2020, Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil, Catena, 190, 104527.
  •  

This Article

  • 2023; 28(5): 36-50

    Published on Oct 31, 2023

  • 10.7857/JSGE.2023.28.5.036
  • Received on Aug 22, 2023
  • Revised on Oct 6, 2023
  • Accepted on Oct 12, 2023

Correspondence to

  • Soon-Oh Kim
  • 1Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju 52828, Korea

  • E-mail: sokim@gnu.ac.kr