• Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil
  • Ji Seul Kim1·Gyo-Cheol Jeong2·Myoung Hyeon Cho3·Eun Young Lee4*

  • 1Doctoral Program, Department of Environmental Engineering, The University of Suwon, Korea
    2Professor, Department of Earth and Environmental Sciences, Andong National University, Korea
    3Director, NEXUS Environmental Design Center, Korea
    4The University of Suwon, Department of Environmental and Energy Engineering, Professor, Korea

  • 훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성
  • 김지슬1·정교철2·조명현3·이은영4*

  • 1수원대학교 환경공학과 박사과정, 2안동대학교 환경공학과, 명예교수,
    3넥서스 환경디자인연구원 ㈜, 원장, 4수원대학교 환경에너지공학과, 교수

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Achuba, F.I. and Peretiemo-Clarke, B.O., 2008, Effect of spent engine oil on soil catalase and dehydrogenase activities, Int. Agrophys., 22(1), 1-4.
  •  
  • 2. Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D., and Pérez-Alegria, L., 2007, Enzyme activities as affected by soil properties and land use in a tropical watershed, Appl. Soil Ecol., 35(1), 35-45.
  •  
  • 3. Adak, T., Singha, A., Kumar, K., Shukla, S.K., Singh, A., and Singh, V.K., 2014, Soil organic carbon, dehydrogenase activity, nutrient availability and leaf nutrient content as affected by organic and inorganic source of nutrient in mango orchard soil, J. Soil Sci. Plant Nutr., 14(2), 394-406.
  •  
  • 4. Adetunji, A.T., Lewu, F.B., Mulidzi, R., and Ncube, B., 2017, The biological activities of ¥â-glucosidase, phosphatase and urease as soil quality indicators: a review, J. Soil Sci. Plant Nutr., 17(3), 794-807.
  •  
  • 5. Alkortal, I., Aizpurua, A., Riga, P., Albizu, I., Amezaga, I., and Garbisu, C., 2003, Soil enzyme activities as biological indicators of soil health, Rev. Environ. Health, 18(1), 65-73.
  •  
  • 6. An, N.H., Lee, S.M., Cho, J.R., Lee, B.M., Shin, J.H., Ok, J.H., and Kim, S.C, 2014, Effects of long-term fertilization on microbial diversity in upland soils estimated by Biolog Ecoplate and DGGE, Korean J. Soil Sci. Fert., 47(6), 451-456.
  •  
  • 7. An, N.H., Ok, J,H., Cho, J.L., Shin, J.H., Nam, H.S., and Kim, S.C., 2015, Effects of organic matter application on soil microbial community in a newly reclaimed soil, Korean J. Org. Agric., 23(4), 767-779.
  •  
  • 8. Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., Merino, C., Cornejo, P., and Kuzyakov, Y., 2020, Meta-analysis of heavy metal effects on soil enzyme activities, Sci. Total Environ., 737, 139744.
  •  
  • 9. Aranda, V., Macci, C., Peruzzi, E., and Masciandaro, G., 2015, Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost, J. Environ. Manage., 147, 278-285.
  •  
  • 10. Bergstrom, D.W., Monreal, C.M., and King, D.J., 1998, Sensitivity of soil enzyme activities to conservation practices. Soil Sci. Soc. Am. J., 62(5), 1286-1295.
  •  
  • 11. Borgulat, J., Kukasik, W., Borgulat, A., Nadgorska-Socha, A., and Kandziora-Ciupa, M., 2021, Influence of lead on the activity of soil microorganisms in two Beskidy landscape parks, Environ. Monit. Assess., 193, 839-852.
  •  
  • 12. Castro, H.F., Classen, A.T., Austin, E.E., Norby, R.J., and Schadt, C.W., 2010, Soil microbial community responses to multiple experimental climate change drivers, Appl. Environ. Microbiol., 76(4), 999-1007.
  •  
  • 13. Chinyere, C.G., Iroha, A.E., and Amadike, U.E., 2013, Effect of altering palm oil and cassava mill effluents pH before dumping on dumpsite soils physicochemical parameters and selected enzyme activities, J. Biodivers. Environ. Sci., 3(4), 46-58.
  •  
  • 14. Chu, H., Lin, X., Fujii, T., Morimoto, S., Yagi, K., Hu, J., and Zhang, J., 2007, Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management, Soil. Biol. Biochem., 39(11), 2971-2976.
  •  
  • 15. Chun, H.C., Lee, S., Gong, D.H., Jung, K.Y., Cho, J.Y., Kim, Y.N., and Lee, Y.B., 2021, Difference in biochemical properties of soils with different periods of agricultural practice after conversion from paddies to uplands, Korean J. Soil Sci. Fert., 54(4), 467-477.
  •  
  • 16. De Almeida, R.F., Naves, E.R., and Da Mota, R.P., 2015, Soil quality: Enzymatic activity of soil ¥â-glucosidase, Glob. J. Agric. Res. Rev., 3(2), 146-150.
  •  
  • 17. De Gannes, V., Bejeke, I., Dipchansingh, D., Wuddivira, M.N., De Cairies, S., Boman, M., and Hickey, W.J., 2016, Microbial community structure and function of soil following ecosystem conversion from native forests to teak plantation forests, Front. Microbiol., 7, 1976.
  •  
  • 18. Ezirim, C.Y., Chikezie, P.C., Iheanacho, K.M., and Nwachukwu, N.R., 2017, Comparative activities of soil enzymes from polluted sites in Egbema, Imo State, Nigeria, J. Pollut. Eff. Cont., 5(1), 185-192.
  •  
  • 19. Garlamd, J.L. and Mills, A.L., 1991, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level Sole-Carbon-Source utilization, Appl. Environ. Microbiol., 57(8), 2351-2359.
  •  
  • 20. Hawrot, M., Nowak, A., and Klodka D., 2005, Changes of dehydrogenases activity in soils polluted with diesel fuel, Pol. J. Microbiol., 54(1), 49-53.
  •  
  • 21. Hong, S.H., Lee, S.M., and Lee, E.Y., 2011, Bioremediation efficiency of oil-contaminated soil using microbial agents, Microbiol. Biotechnol. Lett., 39(3), 301-307.
  •  
  • 22. Hoorman, J.J., Sa, J.C.M., and Reeder, R.C., 2011, The biology of soil compaction (revised & updated), J. of No-till Agric., 9(2), 583-587.
  •  
  • 23. Joa, J.H., Moon, D.G., Chun, S.J., Kim, C.H., Choi, K.S., Hyun, H.N., and Kang, U.G., 2009, Effect of temperature on soil microbial biomass, enzyme activities, and PLFA content during incubation period of soil treated with organic materials, Korean. J. Soil. Sci. Fert., 42(6), 500-512.
  •  
  • 24. Jung, Y.R., Song, I.G., and Kim, Y.J., 2005, Basic study on the biological and physicochemical properties of burnt forest soil for the ecological restoration by organic waste, J. KORRA, 13(1), 79-89.
  •  
  • 25. Kenarova, A., Radeva, G., Traykov, I.. and Boteva, S., 2014, Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites, Ecotoxocol. Environ. Saf., 100, 226-232.
  •  
  • 26. Kim, M.I. and Choo, C.O., 2023, Analysis of the effect of forest fires on the mineralogical characteristics of soil, J. Eng. Geol., 33(1), 69-83.
  •  
  • 27. Kim, J.W., Hong, Y.K., Lee, C.R., and Kim, S.C., 2023, Comparison of physicochemical and biological soil properties in organic and conventional upland fields, Korean J. Soil. Sci. Fert., 56(1), 77-89.
  •  
  • 28. Kim, J.S., Kim, J.H., Jeong, H.C., and Lee, E.Y., 2023, A study on the effects of forest fire on the microbial community activity of forest soil according to the type of rock and difference between topsoil and subsoil, J. Eng. Geol., 33(1), 15-25.
  •  
  • 29. Kim, Y.H., Lim, J.H., An, C.H., Jung, B.K., and Kim, S.D., 2012, Soil microbial community analysis using soil enzyme activities in red pepper field treated microbial agents, J. Appl. Biol. Chem., 55(1), 47-53.
  •  
  • 30. Langer, U. and Günther, T.H., 2001, Effects of alkaline dust deposits from phosphate fertilizer production on microbial biomass and enzyme activities in grassland soils, Env. Pollut., 112(3), 321-327.
  •  
  • 31. Lee S.J., Choo, C.O, Jeong, G.C., and Kim, J.T., 2023, Analysis and comparison of physicochemical characteristics of first-grade soils from ecological and nature map-focused on igneous rock area-, J. Eng. Geol., 33(1), 61-68.
  •  
  • 32. Luo, P., Han, X., Wang, Y., Han, M., Shi, H., Liu, N., and Bai, H., 2015, Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China, Ann. Microbiol., 65, 533-542.
  •  
  • 33. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., and Zavala, L.M., 2011, Fire effects on soil aggregation: A review, Earth Sci. Rev., 109(1-2), 44-60.
  •  
  • 34. Memoli, V., Panico, S.C., Santorufo, L., Barile, R., Di Natale, G., Di Nunzio, A., Toscanesi, M., Trifuoggi, M., De Marco, A., and Maisto, G., 2020, Do wildfires cause changes in soil quality in the short term?, Int. J. Environ. Res. Public Health, 17(15), 5343.
  •  
  • 35. Muńiz S., Lacarta J., Pata M.P., Jiménez J.J., and Navarro E., 2014, Analysis of the diversity of substrate utilisation of soil bacteria exposed to Cd and earthworm activity using generalised additive models, PLoS One., 9(1), e85057.
  •  
  • 36. Oh, J.H., Lee, S.B., Park, S.E., Lee, Y,B., and Kim, P.J., 2008, Effect of fire on microbial community structure and enzyme activities in forest soil, Korean J. of Environ. Agric., 27(2), 133-138.
  •  
  • 37. Puissant, J., Jones, B., Goodall, T., Mang, D., Blaud, A., Gweon, H.S., Malik, A., Jones, D.L., Clark, I.M., and Hirsch, P.R., and Griffith, R., 2019, The pH optimum of soil exoenzymes adapt to long term changes in soil pH, Soil. Biol. Biochem., 138(9), 107601.
  •  
  • 38. Sebiomo, A., Ogundero, V.W., and Bankole, S.A., 2011, Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity, Afr. J. Biotechnol., 10(5), 770-778.
  •  
  • 39. Singh, A.K., Kushwaha, M., Rai, A., and Singh, N., 2017, Changes in soil microbial response across year following a wildfire in tropical dry forest, For. Ecol. Manage., 391, 458-468.
  •  
  • 40. Singh, D., Sharma, P., Kumar, U., Daverey, A., and Arunachalam, K., 2021, Effect of forest fire on soil microbial biomass and enzymatic activity in oak and pine forests of Uttarakhand Himalaya, India, Ecol. Process., 10(29).
  •  
  • 41. Wade, J., Li, C., Vollbracht, K., Hooper, D.G., Wills, S.A., and Margenot, A.J., 2021, Prescribed pH for soil b-glucosidase and phosphomonoesterase do not reflect pH optima, Geoderma, 401(8), 115161.
  •  
  • 42. Weng, X., Li, J., Sui, X., Li, M., Yin, W., Ma, W., Yang, L., and Mu, L., 2021, Soil microbial functional diversity responses to different revegetation types in heilongjiang zhongyangzhan black-billed capercaillie nature reserve, Ann. Microbiol., 71, 26.
  •  
  • 43. Yang, D., Tang, L., Cui, Y., Chen, J., Liu, L., and Guo, C., 2022, Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities, Ecotoxicology, 31(9), 1356-1368.
  •  
  • 44. Yoon, J.H., Kim, K.H., and Yang, J.E., 2022, Difference in soil biogeochemical properties of agricultural highland by topographical characteristic and soil management, Korean J. Soil Sci. Fert., 55(1), 1-12.
  •  
  • 45. Zhang, Y.S., Kim, D.J., Cho, H.R., Seo, Y.H., Lee, H.S. and Kim, S.S., 2020, Effects of forest fire on the physicochemical properties of top soils of adjacent agricultural land, Korean J. Soil Sci. Fert., 53(2), 200-208.
  •  

This Article

  • 2023; 28(5): 68-77

    Published on Oct 31, 2023

  • 10.7857/JSGE.2023.28.5.068
  • Received on Oct 11, 2023
  • Revised on Oct 17, 2023
  • Accepted on Oct 24, 2023

Correspondence to

  • Eun Young Lee
  • 4The University of Suwon, Department of Environmental and Energy Engineering, Professor, Korea

  • E-mail: ley@suwon.ac.kr