• Selection of Plant Species for Phytoremediation of Heavy Metal (As and Cd) Contaminated Soil using Hydroponic Culture
  • Bumjun Kim1·Bumhan Bae2*·Younghun Kim3

  • 1Beautiful Environment Construction, Seongnam, Gyeonggi 13207, Korea
    2Department of Civil & Environmental Engineering, Gachon University, Seongnam 13120, Korea
    3Department of Environmental Engineering, Andong University, Andong 36729, Korea

  • 수경재배에 의한 중금속 (As 및 Cd) 오염토양의 식물상 복원공법 적용 식물종 선별
  • 김범준1·배범한2*·김영훈3

  • 1아름다운환경건설
    2가천대학교 토목환경공학과
    3안동대학교 환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Adriano, D.C., 1986, Trace Elements in Terrestrial Environments, Second edition, Springer-Verlag, New York, USA.
  •  
  • 2. Ali, H., Khan, E., and Sajad, M.A., 2013, Phytoremediation of heavy metals-Concepts and applications, Chemosphere, 91(7), 869-881.
  •  
  • 3. ATSDR (Agency for Toxic Substances & Disease Registry), 2013, ATSDR Substance Priority List. http://www.atsdr.cdc.gov/SPL/index.html. Accessed 23.12.15.
  •  
  • 4. Bello, A.O., Tawabini, B.S., Khalil, A.B., Boland, C.R., and Saleh, T.A., 2018, Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems, Ecol. Eng., 120, 126-133.
  •  
  • 5. Benzarti S., Mohri S., and Ono Y., 2008, Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa, Environ. Toxicol., 23(5), 607-616.
  •  
  • 6. Cajuste, L.J. and Laird, R.J., The relationship between the phytoavailability and extractability of heavy metals in contaminated soils. In, Iskandar, I.K. (Ed.) Environmental Restoration of Metals-Contaminated Soils, Lewis-Publishers, Washington D.C., USA, 189-198.
  •  
  • 7. Danh, L.T., Truong, P., Mammucari, R., and Foster, N., 2014, A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata, Int. J. Phytorem., 16(5), 429-453.
  •  
  • 8. Epstein, E., 1972, Mineral Nutrition of Plants: Principles and Perspectives, J. Wiley and Sons, Inc., New York, 68-82.
  •  
  • 9. Finnegan, P.M. and Chen, W., 2012, Arsenic toxicity: The effects on plant metabolism, Front. Physiol., 3, 182.
  •  
  • 10. Kim, E.J., Yoo, J.C., Park, S.M., Park, E.R., and Baek, K., 2016, Distribution of arsenic and heavy metals in soil particle sizes in the areas affected by the former smelter, J. of Kor. Soc. Env. Anal., 19, 54-62. (in Korean)
  •  
  • 11. Kirkham, M.B., 2006, Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments, Geoderma, 137(1-2), 19-32.
  •  
  • 12. Lebow S., Brook, K., and Simonsen, J., 2002, Environmental impact of treated wood in service, Proceedings of Enhancing the Durability of Lumber and Engineered Wood Products, Forest Products Soc., Orlando, FL., USA, 205-215.
  •  
  • 13. Lim, C.-H. and Kim, H.-J., 2020, Machine learning application for identifying habitat suitability changes of indicator tree species against recent climate change, J. Climate Change Res., 11, 793-805. (in Korean)
  •  
  • 14. Nriagu J.O., 1994, Arsenic in the Environment: Part 1 Cycling and Characterization, John Wiley & Sons, New York, USA, 119-132.
  •  
  • 15. Moon, S.Y., Oh, M., Jung, J., Choi, S.I., and Lee, J.Y., 2011, Assessment of soil washing efficiency for arsenic contaminated site adjacent to Jang Hang refinery, J. Soil Groundw. Environ., 16, 71-81.
  •  
  • 16. Marques, A.P., Rangel, A.O., and Castro, P.M., 2009. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology, Crit. Rev. Env. Sci. Technol., 39, 622-654.
  •  
  • 17. Nouairi, I., Ammar, W.B., Youssef, N.B., Daoud, D.B.M., Ghorbal, M.H., and Zarrouk, M., 2006, Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves, Plant Sci., 170, 511-519.
  •  
  • 18. Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A.H., Seif, F., and Cheraghi, M., 2011, Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran), Environ. Earth Sci., 62, 639-644.
  •  
  • 19. Mondal, P., Majumder, C.B., and Mohanty, B., 2006. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments, J. Haz. Mater., 137(1), 464-479.
  •  
  • 20. Poynton, C.Y., Huang, J.W., Blaylock, M.J., Kochian, L.V., and Elless, M.P., 2004, Mechanisms of arsenic hyperaccumulation in Pteris species: Root As influx and translocation, Planta, 219, 1080-1088.
  •  
  • 21. Poisa, L., Adamovics, A., and Platace, R., 2010, Content of heavy metals in the Reed Canarygrass (Phalaris Arundinacea L.) in the first year of harvest, Scientific Journal of Riga Technical University, 5, 86-90.
  •  
  • 22. Reeves, R.D. and Brooks, R.R., 1983, Hyperaccumulation of lead and zinc by two metallophytes from a mining area in central Europe, Environ. Pollut., 31(4), 277-287.
  •  
  • 23. Sakakibara, M., Ohmori, Y., Ha, N.T.H., Sano, S., and Sera, K., 2011, Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis, Clean: Soil, Air, Water, 39(8), 735-741.
  •  
  • 24. Salt, D.E., Prince, R.C., Pickering, I.J., and Raskin, I., 1995, Mechanisms of cadmium mobility and accumulation in indian mustard, Plant Physiol., 109(4), 1427-1433.
  •  
  • 25. Senze, M., Kowalska-Goralska, M., Czyż, K., and Wondo©©owska-Grabowska, A., 2022, Possibility of metal accumulation in reed canary grass (Phalaris arundinacea L.) in the aquatic environment of south-western polish rivers, Int. J. Environ. Res. Public Health, 19(13), 7779.
  •  
  • 26. Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M.V., and Strelkova, L.P., 2010. Heavy metal contamination of surface soils around a lead and zinc smelter in the Republic of Macedonia, J. Haz. Mater., 175(1-3), 896-914.
  •  
  • 27. Syu, C.H., Jiang, P.Y., Huang, H.H., Chen, W.T., Lin, T.H., and Lee, D.Y., 2013, Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter, Soil Sci. Plant Nutr., 59(3), 463-471.
  •  
  • 28. Tu, S. and Ma, L.Q., 2003, Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L., under hydroponic conditions, Environ. Exp. Bot., 50(3), 243-251.
  •  
  • 29. Tu, S., Ma, L.Q., Fayiga, A.O., and Zillioux, E.J., 2004, Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L., Int. J. Phytorem., 6(1), 35-47.
  •  
  • 30. Uddin M.M., Chen Z., and Huang, L., 2020, Cadmium accumulation, subcellular distribution and chemical fractionation in hydroponically grown Sesuvium portulacastrum [Aizoaceae], PLoS ONE, 15, e0244085.
  •  
  • 31. USEPA, 1996, Hazardous Waste Test Methods/SW-846 Test Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices.
  •  
  • 32. Usman, A.R.A., Lee, S.S., Awad, Y.M., Lim, K.J., Yang, J.E., and Ok, Y.S., 2012, Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea, Chemosphere, 87(8), 872-878.
  •  
  • 33. Xu, W., Du, Q., Yan, S., Cao, Y., Liu, X., Guan, D.-X., and Ma, L.Q., 2022, Geological distribution of As-hyperaccumulator Pteris vittata in china: Environmental factors and climate changes, 2022, Sci. Total Environ., 803, 149864.
  •  
  • 34. Yan, A., Wang, Y., Tan, S.N., Yusof, M.L.M., Ghosh, S., and Chen, Z., 2020, Phytoremediation: A promising approach for revegetation of heavy metal-polluted land, Front. Plant Sci., 11, 359.
  •  
  • 35. Yoon, J., Cao, X., Zhou, Q., and Ma, L.Q., 2006, Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site, Sci. Total Environ., 368(2-3), 456-464.
  •  
  • 36. Zhao, F.J., Dunham, S.J., and McGrath, S.P., 2002, Arsenic hyperaccumulation by different fern species, New Phytol., 156 (1), 27-31.
  •  

This Article

  • 2024; 29(1): 28-38

    Published on Feb 29, 2024

  • 10.7857/JSGE.2024.29.1.028
  • Received on Jan 12, 2024
  • Revised on Jan 15, 2024
  • Accepted on Jan 24, 2024

Correspondence to

  • Bumhan Bae
  • Department of Civil & Environmental Engineering, Gachon University, Seongnam 13120, Korea

  • E-mail: bhbae@gachon.ac.kr