• Positive Effects of Humic Substances on Plant Growth and Biological Soil Indicators when Spring barley is Green Manured on Reclaimed Soils
  • Sua Kang·Hyesun Park·Younrho Lee·Bumhan Bae*

  • Department of Civil & Environmental Engineering, Gachon University

  • 처리토에 녹비 식물 청보리 경작 시 휴믹 물질이 식물생장 및 생물학적 토양 인자에 주는 긍정적 영향
  • 강수아·박혜선·이윤노·배범한*

  • 가천대학교 토목환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Acosta-Martinez, V. and Tabatabai, M.A., 2000, Enzyme activities in a limed agricultural soil, Biol. Fert. Soils, 31(4), 85-91.
  •  
  • 2. Ahmad, I., Saquib, R.U., Qasim, M., Saleem, M., Khan, A.S., and Yaseen, M., 2013, Humic acid and cultivar effects on growth, yield, vase life, and corm characteristics of gladiolus, Chil. J. Agric. Res., 73(4), 339-344.
  •  
  • 3. Alef, K. and Nannipieri, P., 1995, Methods in Applied Soil Microbiology and Biochemistry, Academic Press.
  •  
  • 4. Aon, M.A., Cabello, M.N., Sarena, D.E., Colaneri, A.C., Franco, M.G., Burgos, J.L., and Cortassa, S., 2001, Spatio-temporal patterns of soil microbial and enzymatic activities in agricultural soils, Appl. Soil Ecol., 18(3), 239-254.
  •  
  • 5. Baer, S.G. and Birge, H.E., 2018, Soil Ecosystem Service: An Overview, in Reicosky, D. (ed.), Managing Soil Health for Sustainable Agriculture Volume 1: Fundamentals, Burleigh Dodds Science Publishing, Cambridge, UK.
  •  
  • 6. Bergsveinson, J., Perry, B.J., Simpson, G.L., Yost, C.K., Schutzman, R.J., Hall, B.D., and Cameron, A.D.S., 2019, Spatial analysis of a hydrocarbon waste-remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure, Microb. Biotechnol., 12(6), 1199-1209.
  •  
  • 7. Besalatpour, A., Hajabbasi, M.A., Khoshgoftarmanesh, A.H., and Dorostkar, V., 2011, Landfarming process effects on biochemical properties of petroleum-contaminated soils, Soil Sediment Contam., 20(2), 234-248.
  •  
  • 8. Bini, D., Santos, C.A., Carmo, K.B., Kishino, N., Andrade, G., Zangaro, W., and Nogueira, M.A., 2013, Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil, Eur. J. Soil Biol., 55, 117-123.
  •  
  • 9. Boussora, F., Allam, M., Guasmi, F., Ferchichi, F., Rutten, T., Hansson, M., Youssef, H.M., and Borner, A., 2019, Spike developmental stages and ABA role in spikelet primordia abortion contribute to the final yield in barley (Hordeum vulgare L.), Bot Stud., 60, 13.
  •  
  • 10. Canellas, L.P. and Olivares, F.L., 2014, Physiological responses to humic substances as plant growth promoter, Chem. Biol. Technol. Agric., 1, 3.
  •  
  • 11. Cardoso, E.J.B.N., Vasconcellos, R.L.F., Bini, D., Miyauchi, M.Y.H., Santos, C.A. dos, Alves, P.R.L., Paula, A.M. de, Nakatani, A.S., Pereira J. de M., and Nogueira, M.A., 2013, Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?, Sci. Agric., 70(4), 274-289.
  •  
  • 12. Chen, Y., Clapp, C.E., and Magen, H., 2004, Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes, Soil Sci. Plant Nutr., 50(7), 1089-1095.
  •  
  • 13. Choi, M.-Z., Kim, J.-Y., Kim, J-H., and Choi, S.-I., 2010, A study on effects of oil contaminated soil on the growth of plant, J. Soil Groundw. Environ., 15(1), 50-56.
  •  
  • 14. Kremer, R.J. and Ben-Hammouda, M., 2009, Allelopathic plants. 19. Barley (Hordeum vulgare L), Allolopathy Journal, 24(2), 225-242.
  •  
  • 15. Dorodnikov M., Blagodatskaya E., Blagodatsky S., Marhan S., Fangmeier A., and Kuzyakov, Y, 2009, Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Glob. Change Biol., 15(6), 1603-1614.
  •  
  • 16. Doran, J.W. and Safley, M., 1997, Defining and assessing soil health and sustainable productivity, In: Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., (eds.) Biological Indicators of Soil Health, CAB International, Wallingford, UK.
  •  
  • 17. Eissenstat, D.M., 1991, On the relationship between specific root length and the rate of root proliferation : A field study using citrus rootstocks, New Phytol., 118(1), 63-68.
  •  
  • 18. Garcia-Ruiz R., Ochoa V., Vinegla B., Hinojosa M.B., Pena-Santiago R., Liebanas G., Linares J.C., and Carreira, J,A, 2009 Soil enzymes, nematode community and selected physico-chemical properties as soil quality indicators in organic and conventional olive-oil farming: influence of seasonality and site features. Appl. Soil. Ecol., 41(3), 305-314.
  •  
  • 19. Han, S., Jung, M.C., Kim, J.W., Jeon, S.W., Tuan, N.Q., Yoon, K.W., and Min, S.K., 2020, The occurrence and treatment status of off-site contaminated soils in Korea, J. Soil Groundw. Environ., 25(4), 1-6.
  •  
  • 20. Hartwig, N. and Ammon, H.U., 2002, Cover crops and living mulches, Weed Sci., 50(6), 688-699.
  •  
  • 21. Hong, Y.K., Kim, J.W., Kim, H.S., Park, Y.H., and Kim, S.C., 2021 Comparing soil chemical and biological properties in varied land use, Korean J. Soil Sci. Fert., 54(1), 20-32.
  •  
  • 22. Hubbard, R.K., Strickland, T.C., and Phatak., S., 2013, Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA, Soil Tillage Res., 126, 276-283.
  •  
  • 23. Kandeler, E. and Gerber, H., 1988, Short-term assay of soil urease activity using colorimetric determination of ammonium, Biol. Fertil. Soils, 6(1), 68-72.
  •  
  • 24. Karlen, D.L., Veum, K.S., Sudduth, K.A., Obrycki, J.F., and Nunes, M.R., 2019, Soil health assessment: Past accomplishments, current activities, and future opportunities, Soil Tillage Res,, 195, 104365.
  •  
  • 25. Khaled, H. and Fawy, H.A., 2011, Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity, Soil Water Res., 6(1), 21-29.
  •  
  • 26. Kibblewhite, M.G., Ritz, K., and Swift, M.J., 2008, Soil health in agricultural systems, Philos. Trans. R. Soc. London, Ser. B, 363(1492), 685-701.
  •  
  • 27. Kim, J.W., Hong, Y.K., Lee, C.R., and Kim, S.C., 2023, Comparison of physicochemical and biological soil properties in organic and conventional upland fields, Korean J. Soil Sci. Fert., 56(1), 77-89.
  •  
  • 28. Larney, F.J. and Angers, D.A., 2012, The role of organic amendments in soil reclamation: A review, Can. J. Soil Sci., 92(1), 19-38.
  •  
  • 29. Lehmann, J., Bossio, D.A., Kőgel-Knabner, I., and Rillig, M.C., 2020, The concept and future prospects of soil health, Nat. Rev. Earth Environ., 1(10), 544-553.
  •  
  • 30. Lichtenthaler, H.K., 1987, Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350-382.
  •  
  • 31. Lobet, G., Pages, L., and Draye, X., 2011, A novel image-analysis toolbox enabling quantitative analysis of root system architecture, Plant Physiol., 157(1), 29-39.
  •  
  • 32. Lumactud R.A., Gorim L.Y., and Thilakarathna, M.S., 2022, Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture, Front. Sustain. Food Syst., 6, 977121.
  •  
  • 33. Makoi, J. and Ndakidemi, P., 2008, Selected Soil Enzymes: Examples of their potential roles in the ecosystem, Afr. J. Biochem., 7(3), 181-191.
  •  
  • 34. Millennium Ecosystem Assessment, 2005, Ecosystems and Human Well-Being, Washington, DC, Island Press.
  •  
  • 35. National Institute of Forest Science, 2014, Soil and Plant Analytical Method, 11-1400377-000748-01.(in Korean)
  •  
  • 36. Nikbakht, A., Kafi, M., Babalar, M., Xia, Y.P., Luo, A., and Etemadi, N., 2008, Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera, J. Plant Nutr., 31(12), 2155-2167.
  •  
  • 37. Nunes, R.O., Domiciano, G.A., Alves, W.S., Melo, A.C.A., Nogueira, F.C.S., Canellas, L.P., Olivares, F.L., Zingali, R.B., and Soares, M.R., 2019, Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis, Sci. Rep., 9, 12019.
  •  
  • 38. O'Brien, P.L., DeSutter, T.M., Casey, F.X.M., Khan, E., and Wick, A.F., 2018, Thermal remediation alters soil properties - a review, J. Environ. Manage., 206,826-835.
  •  
  • 39. Pape, A., Switzer, C., Mccosh, N., and Knapp, C., 2015, Impacts of thermal and smouldering remediation on plant growth and soil ecology, Geoderma, 243-244, 1-9.
  •  
  • 40. Park, H.S., Kang, S., and Bae, B., 2021, Quantifying inhibitory effects of reclaimed soils on the shoot and root growth of legume plant lentil(Lens culinaris), J. Soil Groundw. Environ., 26(5), 1-8.
  •  
  • 41. Pepper, I.L. and Gerba, C.P., 2004, Environmental Microbiology: A Laboratory Manual, 2nd Ed., Elsevier Academic Press, MA, USA.
  •  
  • 42. Rice, J.A. and MacCarthy, P., 1991, Statistical evaluation of the elemental composition of humic substances, Org. Geochem., 17(5), 635-648.
  •  
  • 43. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671-675.
  •  
  • 44. Seyedbagheri, M.M., 2010, Influence of humic products on soil health and potato production, Potato Res., 53(4), 341-349.
  •  
  • 45. Stott, D.E., 2019, Recommended Soil Health Indicators and Associated LaboratoryProcedures. Soil Health Technical Note No. 450-03. U.S. Department of Agriculture, Natural Resources Conservation Service.
  •  
  • 46. Trevisan, S., Francioso, O., Quaggiotti, S., and Nardi, S., 2010, Humic substances biological activity at the plant-soil interface, Plant Signaling Behav., 5(6), 635-643.
  •  
  • 47. Villamil, M.B., Bollero, G.A., Darmody, R.G., Simmons, F.W., and Bullock D.G., 2006, No-till corn/soybean systems including winter cover crops: effects on soil properties, Soil Sci. Soc. Am. J., 70(6), 1936-1944.
  •  
  • 48. Yang, K., Zhu, J., Yan, Q., and Zhang, J., 2012, Soil enzyme activities as potential indicators of soluble organic nitrogen pools in forest ecosystems of Northeast China, Ann. For. Sci., 69(7), 795-803.
  •  
  • 49. Yi, Y.M., Oh, C., Kim, G., Lee, C., and Sung, K., 2012, Changes in the physicochemical properties of soil according to soil remediation methods, J. Soil Groundw. Environ., 17(4), 36-43.
  •  
  • 50. Zanin, L., Tomas, N., Cesco, S., Varanini, Z., and Pinton, R., 2019, Humic substances contribute to plant iron nutrition acting as chelators and biostimulants, Front. Plant Sci., 10, 675.
  •  

This Article

  • 2024; 29(1): 51-62

    Published on Feb 29, 2024

  • 10.7857/JSGE.2024.29.1.051
  • Received on Jan 26, 2024
  • Revised on Feb 8, 2024
  • Accepted on Feb 17, 2024

Correspondence to

  • Bumhan Bae
  • Department of Civil & Environmental Engineering, Gachon University

  • E-mail: bhbae@gachon.ac.kr