• The Production of Metal-biochar through Co-pyrolysis of Lignin and Red Mud and Utilization for the Removal of Contaminants in the Water
  • Kim Eunji·Kim Naeun·Park Juyeong·Lee Heuiyun·Yoon Kwangsuk*

  • Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea

  • 리그닌과 적니의 공동 열분해를 통한 금속-바이오차 생산 및 수중 오염물질 제거를 위한 활용
  • 김은지·김나은·박주영·이희연·윤광석*

  • 한양대학교 자원환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ahmed, W., Mehmood, S., Mahmood, M., Ali, S., Shakoor, A., Núñez-Delgado, A., Asghar, R.M.A., Zhao, H., Liu, W., and Li, W., 2023, Adsorption of Pb(II) from wastewater using a red mud modified rice-straw biochar: Influencing factors and reusability, Environ. Pollut., 326, 121405, doi: 10.1016/j.envpol. 2023.121405.
  •  
  • 2. Ben Hassen Trabelsi, A., Zaafouri, K., Baghdadi, W., Naoui, S., and Ouerghi, A., 2018, Second generation biofuels production from waste cooking oil via pyrolysis process, Renew. Energy, 126, 888-896, doi: 10.1016/j.renene.2018.04.002.
  •  
  • 3. Bray, A.W., Stewart, D.I., Courtney, R., Rout, S.P., Humphreys, P.N., Mayes, W.M., and Burke, I.T., 2018, Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment, Environ. Sci. Technol., 52(1), 152-161, doi: 10.1021/acs.est.7b03568.
  •  
  • 4. Burke, I.T., Mayes, W.M., Peacock, C.L., Brown, A.P., Jarvis, A.P., and Gruiz, K., 2012, Speciation of Arsenic, Chromium, and Vanadium in red mud samples from the Ajka spill site, Hungary, Environ. Sci. Technol., 46(6), 3085-3092, doi: 10.1021/es3003475.
  •  
  • 5. Burke, I.T., Peacock, C.L., Lockwood, C.L., Stewart, D.I., Mortimer, R.J.G., Ward, M.B., Renforth, P., Gruiz, K., and Mayes, W.M., 2013, Behavior of Aluminum, Arsenic, and Vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater, Environ. Sci. Technol., 47(12), 6527-6535, doi: 10.1021/es4010834.
  •  
  • 6. Chang, Q., Jiang, G. and Ren, Z., 2017, Nitrogen-Doped microporous carbon derived from polyaniline nanofiber for removal of 2,4-Dichlorophenol, Environ. Eng. Sci., 35(4), 352-361, doi: 10.1089/ees.2017.0084.
  •  
  • 7. Che, H., Wei, G., Fan, Z., Zhu, Y., Zhang, L., Wei, Z., Huang, X., and Wei, L., 2023, Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin, J. Environ. Manage., 335, 117566, doi: 10.1016/j.jenvman.2023.117566.
  •  
  • 8. Chen, T., Zhou, Z., Han, R., Meng, R., Wang, H., and Lu, W., 2015, Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism, Chemosphere, 134, 286-293, doi: 10.1016/j.chemosphere.2015. 04.052.
  •  
  • 9. Cho, D.-W., Yoon, K., Ahn, Y., Sun, Y., Tsang, D.C.W., Hou, D., Ok, Y.S., and Song, H., 2019, Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes, J. Hazard. Mater., 374, 412-419, doi: 10.1016/j.jhazmat.2019.04.071.
  •  
  • 10. Cho, D.-W., Yoon, K., Kwon, E.E., Biswas, J.K., and Song, H., 2017, Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground, Environ. Pollut., 229, 942-949, doi: 10.1016/j.envpol.2017.07. 079.
  •  
  • 11. Constant, S., Wienk, H.L.J., Frissen, A.E., Peinder, P.d., Boelens, R., van Es, D.S., Grisel, R.J.H., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A., and Bruijnincx, P.C.A., 2016, New insights into the structure and composition of technical lignins: a comparative characterisation study, Green Chem., 18(9), 2651-2665, doi: 10.1039/C5GC03043A.
  •  
  • 12. Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A.J., Spencer, N., and Jouhara, H., 2017, Potential of pyrolysis processes in the waste management sector, Therm. Sci. Eng. Prog., 3, 171-197, doi: 10.1016/j.tsep.2017.06.003.
  •  
  • 13. Dolgov, A., Lopaev, D., Lee, C.J., Zoethout, E., Medvedev, V., Yakushev, O., and Bijkerk, F., 2015, Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source, Appl. Surf. Sci., 353, 708-713, doi: 10.1016/j.apsusc.2015.06.079.
  •  
  • 14. Egyir, M., Luyima, D., Park, S.-J., Lee, K.S., and Oh, T.-K., 2022, Volatilisations of ammonia from the soils amended with modified and nitrogen-enriched biochars, Sci. Total Environ., 835, 155453, doi: 10.1016/j.scitotenv.2022.155453.
  •  
  • 15. Foong, S.Y., Liew, R.K., Yang, Y., Cheng, Y.W., Yek, P.N.Y., Wan Mahari, W.A., Lee, X.Y., Han, C.S., Vo, D.-V.N., Van Le, Q., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., and Lam, S.S., 2020, Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions, Chem. Eng. J., 389, 124401, doi: 10.1016/j.cej.2020.124401.
  •  
  • 16. Gautam, M. and Agrawal, M., 2017, Phytoremediation of metals using vetiver (Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil, J. Geochem. Explor., 182, 218-227, doi: 10.1016/j.gexplo.2017. 03.003.
  •  
  • 17. Gillet, S., Aguedo, M., Petitjean, L., Morais, A.R.C., da Costa Lopes, A.M., ¨©ukasik, R.M., and Anastas, P.T., 2017, Lignin transformations for high value applications: towards targeted modifications using green chemistry, Green Chem., 19(18), 4200-4233, doi: 10.1039/C7GC01479A.
  •  
  • 18. Horikawa, Y., Hirano, S., Mihashi, A., Kobayashi, Y., Zhai, S., and Sugiyama, J., 2019, Prediction of lignin contents from infrared spectroscopy: Chemical digestion and Lignin/Biomass ratios of cryptomeria japonica, Appl. Biochem. Biotechnol., 188(4), 1066-1076, doi: 10.1007/s12010-019-02965-8.
  •  
  • 19. Hu, M., Wang, X., Chen, J., Yang, P., Liu, C., Xiao, B., and Guo, D., 2017, Kinetic study and syngas production from pyrolysis of forestry waste, Energy Conv. Manag., 135, 453-462, doi: 10. 1016/j.enconman.2016.12.086.
  •  
  • 20. Jack, J., Huggins, T.M., Huang, Y., Fang, Y., and Ren, Z.J., 2019, Production of magnetic biochar from waste-derived fungal biomass for phosphorus removal and recovery, J. Clean Prod., 224, 100-106, doi: 10.1016/j.jclepro.2019.03.120.
  •  
  • 21. Jiang, Q., Jiang, S., Li, H., Zhang, R., Jiang, Z., and Zhang, Y., 2022, A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine, Chem. Eng. J., 431, 133937, doi: 10.1016/j.cej.2021.133937.
  •  
  • 22. Kamali, M., Sweygers, N., Al-Salem, S., Appels, L., Aminabhavi, T.M., and Dewil, R., 2022, Biochar for soil applications-sustainability aspects, challenges and future prospects, Chem. Eng. J., 428, 131189, doi: 10.1016/j.cej.2021.131189.
  •  
  • 23. Kasera, N., Hall, S., and Kolar, P., 2021, Effect of surface modification by nitrogen-containing chemicals on morphology and surface characteristics of N-doped pine bark biochars, J. Environ. Chem. Eng., 9(2), 105161, doi: 10.1016/j.jece.2021.105161.
  •  
  • 24. Khan, A., Niazi, M.B.K., Ansar, R., Jahan, Z., Javaid, F., Ahmad, R., Anjum, H., Ibrahim, M., and Bokhari, A., 2023, Thermochemical conversion of agricultural waste to hydrogen, methane, and biofuels: A review, Fuel, 351, 128947, doi: 10.1016/j.fuel.2023.128947.
  •  
  • 25. Kim, J.-H., Oh, J.-I., Tsang, Y.F., Park, Y.-K., Lee, J., and Kwon, E.E., 2020, CO2-assisted catalytic pyrolysis of digestate with steel slag, Energy, 191, 116529, doi: 10.1016/j.energy.2019. 116529.
  •  
  • 26. Kwon, G., Cho, D.-W., Moon, D.H., Kwon, E.E., and Song, H., 2019, Beneficial use of CO2 in pyrolysis of chicken manure to fabricate a sorptive material for CO2, Appl. Therm. Eng., 154, 469-475, doi: 10.1016/j.applthermaleng.2019.03.110.
  •  
  • 27. Kwon, G., Cho, D.-W., Kwon, E.E., Rinklebe, J., Wang, H., and Song, H., 2022, Beneficial use of Fe-impregnated bentonite as a catalyst for pyrolysis of grass cut into syngas, bio-oil and biochar, Chem. Eng. J., 448, 137502, doi: 10.1016/j.cej.2022.137502.
  •  
  • 28. Kwon, G., Cho, D.-W., Yoon, K., and Song, H., 2021, Valorization of plastics and goethite into iron-carbon composite as persulfate activator for amaranth oxidation, Chem. Eng. J., 407, 127188, doi: 10.1016/j.cej.2020.127188.
  •  
  • 29. Lee, T., Choi, D., Park, J., Tsang, Y.F., Andrew Lin, K.-Y., Jung, S., and Kwon, E.E., 2024, Valorizing spent mushroom substrate into syngas by the thermo-chemical process, Bioresour. Technol., 391, 130007, doi: 10.1016/j.biortech.2023.130007.
  •  
  • 30. Legodi, M.A. and de Waal, D., 2007, The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste, Dyes Pigment., 74(1), 161-168, doi: 10.1016/j.dyepig.2006.01.038.
  •  
  • 31. Li, X., Qin, Y., Jia, Y., Li, Y., Zhao, Y., Pan, Y., and Sun, J., 2021, Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: A review, Chemosphere, 274, 129766, doi: 10.1016/j.chemosphere.2021.129766.
  •  
  • 32. Li, Y., Wu, Z., Zhao, C., Zhang, Y., Peng, D., and Gong, Z., 2023, Facile fabrication of Zero-valent-iron biochar from red mud for bisulfite activation in wastewater treatment: Performance and mechanism, Environ. Technol. Innov., 30, 103110, doi: 10.1016/j.eti.2023.103110.
  •  
  • 33. Liang, W., Wang, G., Peng, C., Tan, J., Wan, J., Sun, P., Li, Q., Ji, X., Zhang, Q., Wu, Y., and Zhang, W., 2022, Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review, J. Hazard. Mater., 426, 127993, doi: 10.1016/j.jhazmat.2021.127993.
  •  
  • 34. Liu, N., Zhang, Y., Xu, C., Liu, P., Lv, J., Liu, Y., and Wang, Q., 2020, Removal mechanisms of aqueous Cr(VI) using apple wood biochar: a spectroscopic study, J. Hazard. Mater., 384, 121371, doi: 10.1016/j.jhazmat.2019.121371.
  •  
  • 35. Liu, W., Yang, J., and Xiao, B., 2009, Application of Bayer red mud for iron recovery and building material production from alumosilicate residues, J. Hazard. Mater., 161(1), 474-478, doi: 10.1016/j.jhazmat.2008.03.122.
  •  
  • 36. Liu, X., Rong, R., Dai, M., Bian, H., and Peng, C., 2023, Preparation of red mud-based zero-valent iron materials by biomass pyrolysis reduction: Reduction mechanism and application study, Sci. Total Environ., 864, 160907, doi: 10.1016/j.scitotenv. 2022.160907.
  •  
  • 37. Loebsack, G., Kang, K., Klinghoffer, N.B., Yeung, K.K.C., Torsello, D., Gerbaldo, R., and Berruti, F., 2024, Adsorption mechanisms and optimal production of magnetic biochar composites from red mud and soft wood biomass, J. Anal. Appl. Pyrolysis, 177, 106340, doi: 10.1016/j.jaap.2023.106340.
  •  
  • 38. Ma, Z., Troussard, E. and van Bokhoven, J.A., 2012, Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis, Appl. Catal. A: Gen., 423-424, 130-136, doi: 10.1016/j.apcata.2012.02.027.
  •  
  • 39. Purkayastha, D., Mishra, U., and Biswas, S, 2014, A comprehensive review on Cd(II) removal from aqueous solution, J. Water Process. Eng., 2, 105-128, doi: 10.1016/j.jwpe.2014.05. 009.
  •  
  • 40. Qin, S. and Wu, B., 2011, Reducing the radiation dose of red mud to environmentally acceptable levels as an example of novel ceramic materials, Green Chem., 13(9), 2423-2427, doi: 10.1039/C1GC15452D.
  •  
  • 41. Resende, E.C.D., Gissane, C., Nicol, R., Heck, R.J., Guerreiro, M.C., Coelho, J.V., Oliveira, L.C.A.d., Palmisano, P., Berruti, F., Briens, C., and Schlaf, M., 2013, Synergistic co-processing of red mud waste from the Bayer process and a crude untreated waste stream from bio-diesel production, Green Chem., 15(2), 496-510, doi: 10.1039/C2GC36714A.
  •  
  • 42. Rivera, R.M., Ulenaers, B., Ounoughene, G., Binnemans, K., and Van Gerven, T., 2018, Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching, Miner. Eng., 119, 82-92, doi: 10.1016/j.mineng.2018.01.023.
  •  
  • 43. Rubinos, D.A. and Barral, M.T., 2017, Sorptive removal of HgII by red mud (bauxite residue) in contaminated landfill leachate, J. Environ. Sci. Health A, 52(1), 84-98, doi: 10.1080/10934529.2016.1229938.
  •  
  • 44. Sglavo, V.M., Maurina, S., Conci, A., Salviati, A., Carturan, G., and Cocco, G., 2000, Bauxite ¡®red mud¡¯ in the ceramic industry. Part 2: production of clay-based ceramics, J. Eur. Ceram. Soc., 20(3), 245-252, doi: 10.1016/S0955-2219(99)00156-9.
  •  
  • 45. Sun, Y., Li, J.-s., Chen, X., Huang, X., Guo, M., Wan, Y., Lu, L., Chen, Z., and Ma, Z., 2022, Preparation and characteristics of modified red mud-municipal solid waste incineration bottom ash binder, J. Build. Eng., 46, 103760, doi: 10.1016/j.jobe.2021. 103760.
  •  
  • 46. Surikumaran, H., Mohamad, S., and Sarih, N.M., 2014, Molecular imprinted polymer of methacrylic acid functionalised ¥â-Cyclodextrin for selective removal of 2,4-Dichlorophenol, Int. J. Mol. Sci., 15(4), 6111-6136, doi: 10.3390/ijms15046111.
  •  
  • 47. Taheri, E., Fatehizadeh, A., Lima, E.C., and Rezakazemi, M., 2022, High surface area acid-treated biochar from pomegranate husk for 2,4-dichlorophenol adsorption from aqueous solution, Chemosphere, 295, 133850, doi: 10.1016/j.chemosphere.2022. 133850.
  •  
  • 48. Wang, J., Ye, C., Yang, H., Jin, H., Wang, X., Zhang, J., Dong, C., Li, G., Tang, Y., and Fang, X., 2024, Exploring the effect of different precursor materials on Fe-loaded biochar catalysts for toluene removal, J. Environ. Chem. Eng., 12(3), 112601, doi: 10.1016/j.jece.2024.112601.
  •  
  • 49. Wang, Y.-Y., Liu, Y.-X., Lu, H.-H., Yang, R.-Q., and Yang, S.-M., 2018., Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions, J. Solid State Chem., 261, 53-61, doi: 10.1016/j.jssc. 2018.02.010.
  •  
  • 50. Wang, Y., Zhang, T.-a., Lyu, G., Guo, F., Zhang, W., and Zhang, Y., 2018, Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue, J. Clean Prod., 188, 456-465, doi: 10.1016/j.jclepro.2018.04.009.
  •  
  • 51. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S., and Gao, B, 2020, Biochar technology in wastewater treatment: A critical review, Chemosphere, 252, 126539, doi: 10.1016/j.chemosphere.2020.126539.
  •  
  • 52. Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y.S., Jiang, Y., and Gao, B., 2019, Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review, Chem. Eng. J., 366, 608-621, doi: 10.1016/j.cej.2019.02.119.
  •  
  • 53. Yang, Z., An, Q., Deng, S., Xu, B., Li, Z., Deng, S., Zhao, B., and Ye, Z., 2023, Efficient activation of peroxydisulfate by modified red mud biochar derived from waste corn straw for levofloxacin degradation: Efficiencies and mechanisms, J. Environ. Chem. Eng., 11(6), 111609, doi: 10.1016/j.jece.2023.111609.
  •  
  • 54. Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E.P., Cheng, W., Fang, J., and Fang, Z., 2020, Magnetic biochar for environmental remediation: A review, Bioresour. Technol., 298, 122468, doi: 10.1016/j.biortech.2019.122468.
  •  
  • 55. Yoon, K., Cho, D.-W., Tsang, D.C.W., Bolan, N., Rinklebe, J., and Song, H., 2017, Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water, Bioresour. Technol., 246, 69-75, doi: 10.1016/j.biortech.2017.07.020.
  •  
  • 56. Yoon, K., Cho, D.-W., Tsang, Y.F., Tsang, D.C.W., Kwon, E.E., and Song, H., 2019, Synthesis of functionalised biochar using red mud, lignin, and carbon dioxide as raw materials, Chem. Eng. J., 361, 1597-1604, doi: 10.1016/j.cej.2018.11.012.
  •  
  • 57. Yoon, K., Cho, D.-W., Wang, H., and Song, H., 2022, Co-pyrolysis route of chlorella sp. and bauxite tailings to fabricate metal-biochar as persulfate activator, Chem. Eng. J., 428, 132578, doi: 10.1016/j.cej.2021.132578.
  •  
  • 58. Yoon, K., Kwon, G., Kim, E., Rinklebe, J., and Song, H., 2024, Production of Fe-biochar from paper-mill sludge and its application to Se(VI) and Se(IV) removal, Chem. Eng. J., 484, 149470, doi: 10.1016/j.cej.2024.149470.
  •  
  • 59. Zhang, C., Dong, Y., Yang, D., Jin, Q., and Lin, H., 2023, Synthesis of co-pyrolyzed biochar using red mud and peanut shell for removing phosphate from pickling wastewater: Performance and mechanism, Chemosphere, 331, 138841, doi: 10. 1016/j.chemosphere.2023.138841.
  •  
  • 60. Zheng, Q., Li, Z., Guo, T., Fan, Q., Hu, S., Xiang, J., and Fu, P., 2023, Unraveling the synergistic development of carbon skeleton and pore networks involved in lignin pyrolysis, J. Anal. Appl. Pyrolysis, 170, 105912, doi: 10.1016/j.jaap.2023.105912.
  •  
  • 61. Zhou, S., Li, Y., Chen, J., Liu, Z., Wang, Z., and Na, P., 2014, Enhanced Cr(vi) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: characterization, kinetics and mechanism, RSC Adv., 4(92), 50699-50707, doi: 10.1039/C4RA08754B.
  •  
  • 62. Zhu, L., Tong, L., Zhao, N., Li, J., and Lv, Y., 2019, Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution, Chemosphere, 219, 493-503, doi: 10.1016/j.chemosphere.2018.12.013.
  •  

This Article

  • 2024; 29(2): 1-10

    Published on Apr 30, 2024

  • 10.7857/JSGE.2024.29.2.001
  • Received on Apr 22, 2024
  • Revised on Apr 23, 2024
  • Accepted on Apr 25, 2024

Correspondence to

  • Yoon Kwangsuk
  • E-mail: yoongs8912@gmail.com