• Evaluation of Vulnerability to Groundwater Contamination using Groundwater Quality Characteristics and DRASTIC Index in Miryang City
  • SeongYeon Jung1·Sieun Kim1·Sul-Min Yun2·Jeheon Oh3·Chung-Mo Lee1*

  • 1Department of Geological Science, Pusan National University, Busan 46241, Korea
    2Korea Institute of Civil Engineering and Building Technology, Gyeonggi-Do 10223, Korea
    3Korea Rural Community Corporation, Daegu 41463, Korea

  • 밀양시 지하수 수질 특성과 DRASTIC 지수를 이용한 지하수 오염취약성 평가
  • 정성연1·김시은1·윤설민2·오제헌3·이충모1*

  • 1부산대학교 지질환경과학과
    2한국건설기술연구원
    3한국농어촌공사

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Adhikary, P.P. and Dash, C.J., 2017, Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth, Appl. Water Sci., 7, 339-348.
  •  
  • 2. Aller, L., Bennet, T., Lehr, J.H., Petty, R.J., and Hackett, G., 1987, DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrologic settings, USEPA, Washington, DC.
  •  
  • 3. Baek, W.K., Park, S.H., Yu, J.W., Yoon, Y.W., and Jeong, H.S., 2021, Mapping of Groundwater Pollution Vulnerability in Entire South Korea Using DRATIC Model, GEO DATA, 3(2), 32-38.
  •  
  • 4. Bera, A., Mukhopadhyay, B.P., Chowdhury, P., Ghosh, A., and Biswas, S., 2021, Groundwater vulnerability assessment using GIS-based DRASTIC model in Nangasai River Basin, India with special emphasis on agricultural contamination, Ecotoxicol. Environ. Saf., 214, 112085.
  •  
  • 5. Cha, S. and Seo, Y.G., 2020, Groundwater quality in Gyeongnam region using groundwater quality monitoring data: characteristics according to depth and geological features by background water quality exclusive monitoring network, Clean Technol., 26(1), 39-54.
  •  
  • 6. Cheong, B.K., Chae, G.T., Koh, D.C., Ko, K.S., and Koo, M.H., 2008, A study of improvement for the prediction of groundwater pollution in rural area: application in keumsan, Korea, J. Soil Groundwater Environ., 13(4), 40-53.
  •  
  • 7. Chung, S.Y., Elzain, H.E., Senapathi, V., Park, K.H., Kwon, H.W., Yoo, I.K., and Oh, H.R., 2018, Assessment of Groundwater Contamination Vulnerability in Miryang City, Korea using Advanced DRASTIC and fuzzy Techniques on the GIS Platform, J. Soil Groundwater Environ., 23(4), 26-41.
  •  
  • 8. Dugan, H.A., Bartlett, S.L., Burke, S.M., Doubek, J.P., Krivak-Tetley, F.E., Skaff, N.K., Summers, J.C., Farrell, K.J., McCullough, I.M., Morales-Williams, A.M. and Roberts, D.C., 2017, Salting our freshwater lakes, PNAS, 114(17), 4453-4458.
  •  
  • 9. Environmental Geographic Information Service (EGIS), http://egis.me.go.kr/main.do [accessed 24.02.26].
  •  
  • 10. Envbigdata, 2020a, Aquifer media, https://www.bigdata-environment.kr/user/data_market/detail.do?id=7f96b310-2fb9-11eb-bc79-3b11eb915d6d [accessed 24.01.23].
  •  
  • 11. Envbigdata, 2020b, Soil media, https://www.bigdata-environment.kr/user/data_market/detail.do?id=021e3a10-2fba-11eb-8f72-932712f5aa3c [accessed 24.01.23].
  •  
  • 12. Hamm, S.Y., Kim, K.S., Lee, J.H., Cheong, J.Y., Sung, I.H., and Jang, S., 2006, Characteristics of groundwater quality in Sasang industrial area, Busan metropolitan city, Econ. Environ. Geol., 39(6), 753-770.
  •  
  • 13. Hansen, B., Thorling, L., Schullehner, J., Termansen, M., and Dalgaard, T., 2017, Groundwater nitrate response to sustainable nitrogen management, Sci. Rep., 7(1), 8566.
  •  
  • 14. Hauke, J. and Kossowski, T., 2011, Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data, Quaest. Geogr., 30(2), 87-93.
  •  
  • 15. Jeong, G.C., 2018, Assessment of Groundwater Contamination Vulnerability by Geological Characteristics of Unsaturated Zone. The J. Eng. Geol., 28(4), 727-740.
  •  
  • 16. Jiang, Y., Wu, Y., Groves, C., Yuan, D., and Kambesis, P., 2009, Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunnan, China, J. Contam. Hydrol., 109(1-4), 49-61.
  •  
  • 17. Kaliraj, S., Chandrasekar, N., Peter, T.S., Selvakumar, S. and Magesh, N.S., 2015, Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model. Environ. monit. assess., 187, 1-27.
  •  
  • 18. Khosravi, K., Sartaj, M., Karimi, M., Levison, J., and Lotfi, A., 2021, A GIS-based groundwater pollution potential using DRASTIC, modified DRASTIC, and bivariate statistical models, Environ. Sci. Pollut. Res., 28(36), 50525-50541.
  •  
  • 19. Ki, M.G., Yoon, H., Koh, D.C., Hamm, S.Y., Lee, C.M., and Kim, H.S., 2013, A comparative study of groundwater vulnerability assessment methods: application in Gumma, Korea. J. Soil Groundwater Environ., 18(3), 119-133.
  •  
  • 20. Kim, G.B. and Hwang, S.G., 1988, Miryang Geological Report 1:50,000, Korea Institute of Energy and Resources.
  •  
  • 21. Kim, H.K., Park, S.H., Hwang, J.Y., Kim, M.S., Jo, H.J., Jeon, S.H., Lee, K.K., and Jeen, S.W., 2017, Groundwater qualities of wells around carcass burial areas, Korean, J. Geol. Soc., 53, 433–446.
  •  
  • 22. Kim, M., Jeong, G., Lee, J.E., and Kim, M.G., 2020, Estimating exploitable groundwater as a function of precipitation using a distributed hydrologic model and frequency analysis, J. Eng. Geol., 30(3), 253-268.
  •  
  • 23. Kim, S., Jung, S., Kim, M., Kim, Y.T., Cha, Y.H., and Lee C.M., 2024, Hydrogeological Characteristics of Groundwater in Small Watershed of the Nakdong River Basin, J. Kor. Earth Sci. Soc., 45(1), 72-84.
  •  
  • 24. Kwon, E., Park, J., Park, W.B., Kang, B.R., Hyeon, B.S., and Woo, N.C., 2022, Nitrate vulnerability of groundwater in Jeju Volcanic Island, Korea, Sci. Total Environ., 807, 151399.
  •  
  • 25. Korea Meteorological Administration (KMA), https://data.kma.go.kr [accessed 24.03.02].
  •  
  • 26. Lee, I.H., Lee, J.Y., and Kim, T.K., 1997, Geochemical study on the quality of groundwater in Daegu city, Korea, Econ. Environ. Geol., 30(4), 327-340.
  •  
  • 27. Li, P., Karunanidhi, D., Subramani, T., and Srinivasamoorthy, K., 2021, Sources and consequences of groundwater contamination, Arch. Environ. con. tox., 80, 1-10.
  •  
  • 28. Mast, M.A., Drever, J.I., and Baron, J., 1990, Chemical weathering in the Loch Vale watershed, Rocky Mountain National Park, Colorado, Water Resour. Res., 26(12), 2971-2978.
  •  
  • 29. Melo, A., Pinto, E., Aguiar, A., Mansilha, C., Pinho, O., and Ferreira, I.M., 2012, Impact of intensive horticulture practices on groundwater content of nitrates, sodium, potassium, and pesticides, Environ. Monit. Assess., 184, 4539-4551.
  •  
  • 30. Ministry of Environment (MOE), 2023, Master plan for national groundwater management.
  •  
  • 31. Ministry of Land, Infrastructure and Transport (MLIT), K-water, Korea Mine Rehabilitation, and Mineral Resources Corporation, 2003, Report for basic research of groundwater of Miryang area.
  •  
  • 32. Miryang City Hall (MCH), http://www.miryang.go.kr [accessed 24.03.01].
  •  
  • 33. National Geographic Information Institute (NGII), https://map.ngii.go.kr/ms/map/NlipMap.do [accessed 24.02.26].
  •  
  • 34. Neshat, A., Pradhan, B., and Dadras, M., 2014, Groundwater vulnerability assessment using an improved DRASTIC method in GIS, Resour. Conserv. Recycl., 86, 74-86.
  •  
  • 35. Panno, S.V., Hackley, K.C., Hwang, H.H., Greenberg, S.E., Krapac, I.G., Landsberger, S. and O’kelly, D.J., 2006, Characterization and identification of Na‐Cl sources in ground water, Groundwater, 44(2), 176-187.
  •  
  • 36. Park, J., Lee, D., Kim, H., and Woo, N.C., 2023, Effects of dry and heavy rainfall periods on arsenic species and behaviour in the aquatic environment adjacent a mining area in South Korea, J. Hazard. Mater., 441, 129968.
  •  
  • 37. Park, S.W., Kim, J.W., and Song, D.S., 2017, A proposal of an interpolation method of missing wind velocity data in writing a typical weather data, J. Korean Solar Energy, 37(6), 79–91.
  •  
  • 38. Patel, P., Mehta, D., and Sharma, N., 2022, A review on the application of the DRASTIC method in the assessment of groundwater vulnerability, Water Supply, 22(5), 5190-5205.
  •  
  • 39. Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of water analyses, EOS, Trans. Am. Geophys. Union, 25, 914-923.
  •  
  • 40. Rao, N.S., Rao, P.S., Reddy, G.V., Nagamani, M., Vidyasagar, G., and Satyanarayana, N.L.V.V., 2012, Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India, Environ. monit. assess., 184(8), 5189-5214.
  •  
  • 41. Sherwood, W.C., 1989, Chloride loading in the South Fork of the Shenandoah River, Virginia, USA, Environ. Geol. Water Sci., 14(2), 99-106.
  •  
  • 42. Shirazi, S.M., Imran, H.M., Akib, S., Yusop, Z., and Harun, Z.B., 2013, Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques, Environ. Earth Sci., 70, 2293-2304.
  •  
  • 43. Spalding, R.F. and Exner, M.E., 1993, Occurrence of nitrate in groundwater—a review, J. Environ. Qual., 22(3), 392-402.
  •  
  • 44. Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, V.S., Rajivgandhi, R., Chidambaram, S., Anandhan, P. and Manivannan, R., 2011, Assessment of groundwater vulnerability in Mettur region, Tamilnadu, India using drastic and GIS techniques. Arab. J. Geosci., 4, 1215-1228.
  •  
  • 45. Taghavi, N., Niven, R.K., Kramer, M., and Paull, D.J., 2023, Comparison of DRASTIC and DRASTICL groundwater vulnerability assessments of the Burdekin Basin, Queensland, Australia, Sci. Total Environ., 858, 159945.
  •  
  • 46. United Nations, 2022, Executive Summary of the United Nations World Water Development Report 2022 – Groundwater: Making the invisible visible.
  •  
  • 47. Wayland, K.G., Long, D.T., Hyndman, D.W., Pijanowski, B.C., Woodhams, S.M., and Haack, S.K., 2003, Identifying relationships between baseflow geochemistry and land use with synoptic sampling and R‐mode factor analysis, J. Environ. Qual., 32(1), 180-190.
  •  
  • 48. Won, K.S., Kim, C., Chae, S.Y., and Shin, D.M., 2016, Using a Borehole Stability Device for Hydraulic Testing in Unconsolidated Alluvium, J. Eng. Geol., 26(1), 15-22.
  •  
  • 49. Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A., and He, L., 2020, Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang river in Huangshan, China, Int. J. Environ. res. public health, 17(8), 2942.
  •  
  • 50. Yeh, H.F., Lee, C.H., Hsu, K.C., and Chang, P.H., 2009, GIS for the assessment of the groundwater recharge potential zone, Environ. Geol., 58, 185-195.
  •  

This Article

  • 2024; 29(3): 23-36

    Published on Jun 30, 2024

  • 10.7857/JSGE.2024.29.3.023
  • Received on May 23, 2024
  • Revised on Jun 14, 2024
  • Accepted on Jun 25, 2024

Correspondence to

  • Chung-Mo Lee
  • Department of Geological Science, Pusan National University, Busan 46241, Korea

  • E-mail: chungmo@pusan.ac.kr