• Evaluation of Field Applicability of Calcium Polysulfide for Cadmium and Zinc Immobilization in Groundwater and Its Impact on Microbial Ecology
  • Sang Hun An1,2ㆍDong-Hun Kim1ㆍSung Pil Hyun1ㆍSoo Min Song1,2ㆍHee Sun Moon1,2*ㆍByung Yong Yoon3ㆍYong Hoon Cha3ㆍKyoungphile Nam4

  • 1Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscienceand Mineral Resources (KIGAM)
    2Geological Science, University of Science and Technology (UST)
    3Geogreen21 Co., Ltd.
    4Department of Civil and Environmental Engineering, Seoul National University

  • 환원제를 이용한 지하수 내 고농도 카드뮴 및 아연 고정화 기술 현장 적용성 평가 및 미생물 생태 변화 모니터링
  • 안상훈1,2ㆍ김동훈1ㆍ현성필1ㆍ송수민1,2ㆍ문희선1,2*ㆍ윤병용3ㆍ차용훈3ㆍ남경필4

  • 1한국지질자원연구원 기후변화대응연구본부 지하수환경연구센터
    2과학기술연합대학원대학교 지질과학전공
    3(주)지오그린21
    4서울대학교 건설환경공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Akpor, O.B., Ohiobor, G.O., and Olaolu, D.T., 2014, Heavy metal pollutants in wastewater effluents: sources, effects and remediation, Adv. Biosci. Bioeng., 2(4), 37-43.
  •  
  • 2. Ashley, P.M., Lottermoser, B.G., and Chubb, A.J., 2003, Environmental geochemistry of the Mt Perry copper mines area, SE Queensland, Australia, Geochem.: Explor. Environ. Anal., 3(4), 345-357.
  •  
  • 3. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., and Caporaso, J.G., 2019, Reproducible, interactive, scalable and extensible microbiome data science using Qiime 2, Nat. Biotechnol., 37(8), 852-857.
  •  
  • 4. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P., 2016, Dada2: High-resolution sample inference from Illumina amplicon data, Nat. Methods, 13(7), 581-583.
  •  
  • 5. Chou, P.I., Ng, D.Q., Li, I.C., and Lin, Y.P., 2018, Effects of dissolved oxygen, pH, salinity and humic acid on the release of metal ions from PbS, CuS and ZnS during a simulated storm event, Sci. Total Environ., 624, 1401-1410.
  •  
  • 6. Chrysochoou, M., Ferreira, D.R., and Johnston, C.P., 2010, Calcium polysulfide treatment of Cr(VI)-contaminated soil, J. Hazard. Mater., 179(1-3), 650-657.
  •  
  • 7. Ding, L., Song, J., Huang, D., Lei, J., Li, X., and Sun, J., 2021, Simultaneous removal of nitrate and hexavalent chromium in groundwater using indigenous microorganisms enhanced by emulsified vegetable oil: Interactions and remediation threshold values, J. Hazard. Mater., 406, 124708.
  •  
  • 8. Go, H.W., Joo, J.C., Nam, K., Moon, H.S., Yoon, S.H., Lee, D.H., and Jang, S.Y., 2023, Feasibility evaluation for remediation of groundwater contaminated with heavy metal using calcium polysulfide in homogeneous media, J. Soil Groundwater Environ., 28(1), 1-14.
  •  
  • 9. Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., and Sengupta, B., 2011, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manage., 92(10), 2355-2388.
  •  
  • 10. Huang, C.Y., Cheng, P.C., Chang, J.H., Wan, Y.C., Hong, X.M., and Cheng, S.F., 2021, Feasibility of remediation lead, nickel, zinc, copper, and cadmium-contaminated groundwater by calcium sulfide, Water, 13(16), 2266.
  •  
  • 11. Hudson-Edwards, K.A. and Edwards, S.J., 2005, Mineralogical controls on storage of As, Cu, Pb, and Zn at the abandoned Mathiatis massive sulphide mine, Cyprus, Mineral. Mag., 69(5), 695-706.
  •  
  • 12. Katoh, K., Misawa, K., Kuma, K., and Miyata, T., 2002, MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 30(14), 3059-3066.
  •  
  • 13. Kikuchi, T. and Tanaka, S., 2012, Biological removal and recovery of toxic heavy metals in water environment, Crit. Rev. Environ. Sci. Technol., 42(10), 1007-1057.
  •  
  • 14. Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., and Han, W., 2019, A review on heavy metals contamination in soil: Effects, sources, and remediation techniques, Soil Sediment Contam.: Int. J., 28(4), 380-394.
  •  
  • 15. Lopes, A.R., Madureira, D., Diaz, A., Santos, S., Vila, M.C., and Nunes, O.C., 2020, Characterisation of bacterial communities from an active mining site and assessment of its potential metal solubilising activity, J. Environ. Chem. Eng., 8(6), 104495.
  •  
  • 16. Ludwig, R.D., Su, C., Lee, T.R., Wilkin, R.T., Acree, S.D., Ross, R.R., and Keeley, A., 2007, In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: A field investigation, Environ. Sci. Technol., 41(15), 5299-5305.
  •  
  • 17. Mpouras, T., Papassiopi, N., Lagkouvardos, K., Mystrioti, C., and Dermatas, D., 2021, Evaluation of calcium polysulfide as a reducing agent for the restoration of a Cr(VI)-contaminated aquifer, Bull. Environ. Contam. Toxicol., 106, 435-440.
  •  
  • 18. Mystrioti, C., Toli, A., Papassiopi, N., Dermatas, D., and Thimi, S., 2018, Chromium removal with environmentally friendly iron nanoparticles in a pilot scale study, Bull. Environ. Contam. Toxicol., 101, 705-710.
  •  
  • 19. Najafi, A., Asjadi, F., and Safari, A.A., 2022, Effect of sulfide and hydroxide on the removal of heavy metal ions from hydrometallurgical zinc effluent, Int. J. Environ. Anal. Chem., 1-15.
  •  
  • 20. NERT (Nevada Environmental Response Trust), 2018, In-situ chromium treatability study results report, Nevada Environmental Response Trust Site, Henderson, Nevada.
  •  
  • 21. Parvin, F. and Tareq, S.M., 2021, Impact of landfill leachate contamination on surface and groundwater of Bangladesh: a systematic review and possible public health risks assessment, Appl. Water Sci., 11(6), 100.
  •  
  • 22. Petersen, S.W., Hedquist, K.A., and Hanford, F., 2006, Treatability test report for calcium polysulfide in the 100-K Area, US Department of Energy.
  •  
  • 23. Pohl, A., 2020, Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents, Water Air Soil Pollut., 231(10), 503.
  •  
  • 24. Price, M.N., Dehal, P.S., and Arkin, A.P., 2010, FastTree 2: Approximately maximum-likelihood trees for large alignments, PLoS One, 5(3), e9490.
  •  
  • 25. Yoon, S., 2023, Remediation of cadmium and zinc in groundwater by calcium polysulfide: Precipitation mechanism, oxidation resistance, Ph.D. thesis, Seoul National University Graduate School, Seoul.
  •  
  • 26. Yoon, S., Jeong, S., Moon, C., and Nam, K., 2024, Removal of cadmium and zinc by calcium polysulfide in acidic groundwater: Injection ratio and precipitation mechanism, Chemosphere, 364, 143219.
  •  
  • 27. Yang, Y., Wang, J., Xie, X., Xie, Z., Chen, M., and Zhong, F., 2024, Enhancing the bioreduction and interaction of arsenic and iron by thiosulfate in groundwater, Ecotoxicol. Environ. Saf., 274, 116210.
  •  
  • 28. Yang, X., Liu, P., Yao, M., Sun, H., Liu, R., Xie, J., and Zhao, Y., 2021, Mechanism and enhancement of Cr(VI) contaminated groundwater remediation by molasses, Sci. Total Environ., 780, 146580.
  •  
  • 29. Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., and Guerrero, V.H., 2021, Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods, Environ. Technol. Innov., 22, 101504.
  •  
  • 30. Zhang, P., He, Z., Van Nostrand, J.D., Qin, Y., Deng, Y., Wu, L., Tu, Q., Wang, J., Schadt, C.W., Fields, M.W., Hazen, T.C., Arkin, A.P., Stahl, D.A., and Zhou, J., 2017, Dynamic succession of groundwater sulfate-reducing communities during prolonged reduction of uranium in a contaminated aquifer, Environ. Sci. Technol., 51(7), 3609-3620.
  •  
  • 31. Zhao, Q., Li, X., Xiao, S., Peng, W., and Fan, W., 2021, Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments, J. Hazard. Mater., 406, 124680.
  •  

This Article

  • 2024; 29(5): 14-26

    Published on Oct 31, 2024

  • 10.7857/JSGE.2024.29.5.014
  • Received on Sep 21, 2024
  • Revised on Sep 25, 2024
  • Accepted on Oct 10, 2024

Correspondence to

  • Hee Sun Moon
  • 1Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscienceand Mineral Resources (KIGAM)
    2Geological Science, University of Science and Technology (UST)

  • E-mail: hmoon@kigam.re.kr