• Derivation of Predicted no Effect Concentration of Perfluorooctanesulfonic Acid (PFOS) in Water and Soil Based on Species Sensitivity Distribution Considering Mode of Action
  • Sang-Gyu Yoon1ㆍWoo Hyun Kim2ㆍYu-Jin Jung1ㆍDahee Hong3ㆍJiyoung Kim1ㆍSung-Hwan Jang1,2,3ㆍTae-Woong Kim1,2,3ㆍIhn-Sil Kwak4ㆍJinsung An1,2,3*

  • 1Department of Smart City Engineering, Hanyang University, Ansan 15588, South Korea
    2Department of Civil and Environmental Engineering, Hanyang University, Ansan 15588, South Korea
    3Department of Civil and Environmental System Engineering, Hanyang University, Ansan 15588, South Korea
    4Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea

  • 독성기전을 고려한 종 민감도 분포 기반 수계 및 토양 내 과불화옥탄술폰산(PFOS)의 예측 무영향 농도 산정
  • 윤상규1ㆍ김우현2ㆍ정유진1ㆍ홍다희3ㆍ김지영1ㆍ장승환1,2,3ㆍ김태웅1,2,3ㆍ곽인실4ㆍ안진성1,2,3*

  • 1한양대학교 대학원 스마트시티공학과
    2한양대학교 ERICA 건설환경공학과
    3한양대학교 대학원 건설환경시스템공학과
    4전남대학교 해양융합과학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ankley, G.T., Kuehl, D.W., Kahl, M.D., Jensen, K.M., Butterworth, B.C., and Nichols, J.W., 2009a. Partial life-cycle toxicity and bioconcentration modeling of perfluorooctanesulfonate in the northern leopard frog (Rana pipiens). Environ. Toxicol. Chem., 23(11), 2745-2755.
  •  
  • 2. Ankley, G.T., Kuehl, D.W., Kahl, M.D., Jensen, K.M., Linnum, Ann, Leino, R.L., and Villeneuve, D.A., 2009b, Reproductive and developmental toxicity and bioconcentration of perfluorooctanesulfonate in a partial life-cycle test with the fathead minnow (Pimephales promelas), Environ. Toxicol. Chem., 24(9), 2316-2324,
  •  
  • 3. ANZG (Australian and New Zealand Governments), 2023, Toxicant default guideline values for aquatic ecosystem protection: Perfluorooctane sulfonate (PFOS) in freshwater, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian Government Department of Climate Change, Energy, the Environment and Water, Canberra, ACT, Australia, 15p.
  •  
  • 4. Chen, N., Li, J., Li, D., Yang, Y., and He, D., 2014, Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro, PloS one., 9(11), e113453.
  •  
  • 5. Chung, J., Hwang, D.-S., Park, D.-H., An, Y.J., Yeom, D.-H., Park, T.-J., Choi, J., and Lee, J.-H., 2021, Derivation of acute copper biotic ligand model-based predicted no-effect concentrations and acute-chronic ratio, Sci. Total Environ., 780, 146425.
  •  
  • 6. CRCCARE (Cooperative research centre for contamination assessment and remediation of the environment), 2017. Assessment, management and remediation guidance for perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) Part 3 – ecological screening levels. Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Newcastle.
  •  
  • 7. Dhangar, D. and Kumar, M., 2021. Perfluorooctanesulfonate (PFOS), Its occurrence, fate, transport and removal in various environmental media: A review. Contaminants in Drinking and Wastewater Sources, 405-436.
  •  
  • 8. Du, G., Hu, J., Huang, H., Qin, Y., Han, X., Wu, D., Song, L., Xia, Y., and Wang, X., 2013, Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine‐related genes in vitro and in vivo, Environ. Toxicol. Chem., 32(2), 353-360.
  •  
  • 9. ECOTOX , https://cfpub.epa.gov/ecotox/ [23.11.29]
  •  
  • 10. Environment and Climate Change Canada, 2018, Federal Environmental Quality Guidelines: Perfluorooctane Sulfonate (PFOS), Canadian Environmental Protection Act, 1999, Ottawa, Canada, 13p.
  •  
  • 11. Glüge, J., Scheringer, M., Cousins, I.T., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A., Trier, X., and Wang, Z., 2020, An overview of the uses of per-and polyfluoroalkyl substances (PFAS), Environ. Sci. Process. Impacts, 22(12), 2345-2373.
  •  
  • 12. Guo, X., Li, Q., Shi, J., Shi, L., Li, B., Xu, A., Zhao, G., and Wu, L., 2016, Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage, Chemosphere, 155, 115-126.
  •  
  • 13. ISO (International Organization for Standardization), 2016, Water quality — Determination of the acute toxicity to the marine rotifer Brachionus plicatilis, International Organization for Standardization, Geneva, 13p.
  •  
  • 14. Jarvis, A.L., Justice, J.R., Elias, M.C., Schnitker, B., and Gallagher, K., 2021, Perfluorooctane sulfonate in US ambient surface waters: a review of occurrence in aquatic environments and comparison to global concentrations, Environ. Toxicol. Chem., 40(9), 2425-2442.
  •  
  • 15. Jin, X., Wang, Y., Jin, W., Rao, K., Giesy, J. P., Hollert, H., Richardson, K.L., and Wang, Z., 2014, Ecological risk of nonylphenol in china surface waters based on reproductive fitness, Environ. Sci. Technol., 48(2), 1256-1262.
  •  
  • 16. Johnson, M.S., Aubee, C., Salice, C.J., Leigh, K.B., Liu, E., Pott, U., and Pillard, D., 2016, Areview of ecological risk assessment methods for amphibians: Comparative assessment of testing methodologies and available data, Integr. Environ. Asses. Manag., 13(4), 601-613.
  •  
  • 17. Sorgog, K. and Kamo, M., 2019, Quantifying the precision of ecological risk: Conventional assessment factor method vs. species sensitivity distribution method, Ecotoxicol. Environ. Saf., 183, 109494.
  •  
  • 18. Joo, G., Kim, Y., Kim, G., Song, J., Lee, M., Choe, J.K., and Choi, Y., 2021, Perfluorochemicals in Korean wastewater treatment plants: implications on sources and monitoring, KSCE J. Civ. Eng., 25, 1931-1938.
  •  
  • 19. Kwak, J.I., Lee, T.-Y., Seo, H., Kim, D., Kim, D., Cui, R., and An, Y.-J., 2020, Ecological risk assessment for perfluorooctanoic acid in soil using a species sensitivity approach, J. Hazard. Mater., 382, 121150.
  •  
  • 20. Lee, B., Lee, B., Kim, P., and Yoon, H., 2020, Ecological risk assessment of lead and arsenic by environmental media, J. Environ. Health Sci., 46(1), 1-10.
  •  
  • 21. Li, H. and Koosaletse-Mswela, P., 2023, Occurrence, fate, and remediation of per- and polyfluoroalkyl substances in soils: a review, Curr. Opin. Environ. Sci. Health., 34, 100487.
  •  
  • 22. Li, Q., Wang, T., Zhu, Z., Meng, J., Wang, P., Zhang, Y., Zhou, Y., Song, S., Lu, Y., Yvette, B., Suriyanarayanan, S. Zhang, Y., Zhou, Y., Song, S., Lu, Y., and Yvette, B., 2017, Using hydrodynamic model to predict PFOS and PFOA transport in the Daling River and its tributary, a heavily polluted river into the Bohai Sea, China, Chemosphere, 167, 344-352.
  •  
  • 23. Liu, N, Wang, Y., Yang, Q., Lv, Y., Jin, X., Giesy, J.P., and Johnson, A.C., 2016, Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fich, Environ. Pollut., 213, 482-488.
  •  
  • 24. Liu, Y., Bahar, M.M., Samarasinghe, S.V.A.C., Qi, F., Carles, S., Richmond, W.R., Dong, Z., and Naidu, R., 2022, Ecological risk assessment for perfluorohexanesulfonic acid (PFHxS) in soil using species sensitivity distribution (SSD) approach, J. Hazard. Mater., 439, 129667.
  •  
  • 25. McCarthy, C.J., Roark, S.A., WRIGHT, D., O'Neal, K., Muckey, B., Stanaway, M., Reserts, J.N., Field, J.A., Anderson, T.A., and Salice, C.J., 2021. Toxicological response of Chironomus dilutus in single-chemical and binary mixture exposure experiments with 6 perfluoralkyl substances. Environ. Toxicol. Chem., 40(8), 2319-2333.
  •  
  • 26. Naaz, T., Kumar, A., Vempaty, A., Singhal, N., Pandit, S., Gautam, P., and Jung, S.P., 2023, Recent advances in biological approaches towards anode biofilm engineering for improvement of extracellular electron transfer in microbial fuel cells, Environ. Eng. Res., 28(5), 220666.
  •  
  • 27. National Institute of Environmental Research Notice No. 2021-13, 2021, Regulations on specific methods of chemical risk assessment, etc. [Appendix 4] Minimum data requirements for using species sensitivity distribution (related to Article 6, Paragraph 6, Item 2).
  •  
  • 28. OECD (Organisation for Economic Co-operation and Development), 1984, Test No. 207: Earthworm, Acute Toxicity Tests, OECD Publishing, Paris.
  •  
  • 29. OECD (Organisation for Economic Co-operation and Development), 2000a, Test No. 215: Fish, Juvenile Growth Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  •  
  • 30. OECD (Organisation for Economic Co-operation and Development), 2000b, Test No. 216: Soil Microorganisms: Nitrogen Transformation Test, OECD Publishing, Paris.
  •  
  • 31. OECD (Organisation for Economic Co-operation and Development), 2004, Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  •  
  • 32. OECD (Organisation for Economic Co-operation and Development), 2006a, OECD guidelines for the testing of chemicals: Freshwater alga and cyanobacteria, growth inhibition test, OECD Publishing, Paris, 25 p.
  •  
  • 33. OECD (Organisation for Economic Co-operation and Development), 2006b, Test No. 227: Terrestrial plant test: Vegetative vigour test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 21p.
  •  
  • 34. OECD (Organisation for Economic Co-operation and Development), 2009, Test No. 230: 21-day Fish Assay: A Short-Term Screening for Oestrogenic and Androgenic Activity, and Aromatase Inhibition, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  •  
  • 35. OECD (Organisation for Economic Co-operation and Development), 2012, Test Guideline No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  •  
  • 36. OECD (Organisation for Economic Co-operation and Development), 2016a, Test No. 243: Lymnaea stagnalis Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  •  
  • 37. OECD (Organisation for Economic Co-operation and Development), 2016b, Test No. 242: Potamopyrgus antipodarum Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  •  
  • 38. Olsen, G.W., Burris, J.M., Ehresman, D.J., Froehlich, J.W., Seacat, A.M., Butenhoff, J.L., and Zobel, L.R., 2007, Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers, Environ. Health Perspect., 115(9), 1298-1305.
  •  
  • 39. Park, J. and Kim, S. D., 2020, Derivation of predicted no effect concentrations (PNECs) for heavy metals in freshwater organisms in Korea using species sensitivity distributions (SSDs), Minerals, 10(8), 697.
  •  
  • 40. Park, S.-B. and Jang, Y.-Y., 2023, A study on the emission of fluorine-based chemicals and the detection of perfluorooctane sulfonic acids(PFOS) ans perfluorooctanic acids (PFOA) in domestic main rivers, J. Korea Org. Resour. Recycl. Assoc., 31(2), 5-18.
  •  
  • 41. Qazi, M.R., Bogdanska, J., Butenhoff, J.L., Nelson, B.D., DePierre, J.W., and Abedi-Valugerdi, M., 2009, High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion, Toxicology, 262(3), 207-214.
  •  
  • 42. Qiao, Y., Liu, D., Feng, C., Liu, N, Wang, J., Yan, Z., and Bai, Y., 2022, Ecological risk assessment for tris(2-chloroethyl) phosphate to freshwater organisms, Front. Environ. Sci., 10, 963918.
  •  
  • 43. Razak, M.R., Aris, A.Z., Zainuddin, A.H., Yusoff, F.M., Yusof, Z.N.B., Kim, S.D., and Kim, K.W., 2023, Acute toxiciy and risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) in tropical cladocerans Moina micrura, Chemosphere, 313, 137377.
  •  
  • 44. Saikat, S., Kreis, I., Davies, B., Bridgman, S., and Kamanyire, R., 2013, The impact of PFOS on health in the general population: a review, Environ. Sci.: Process. Impacts, 15(2), 329-335.
  •  
  • 45. Salvalaglio, M., Muscionico, I., and Cavallotti, C., 2010, Determination of energies and sites of binding of PFOA and PFOS to human serum albumin, J. Phys. Chem. B, 114(46), 14860-14874.
  •  
  • 46. Sant, K.E., Annunziato, K., Conlin, S., Teicher, G., Chen, P., Venezia, O., Downes, G.B., Park, Y., and Timme-Laragy, A.R., 2021, Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio Rerio, Environ. Pollut., 275, 116644.
  •  
  • 47. Sant, K.E., Jacobs, H.M., Borofski, K.A., Moss, J.B., and Timme-Laragy, A.R., 2017, Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio, Environ. Pollut., 220, 807-817.
  •  
  • 48. SCHEER (Scientific Committee on Health, Environmental and Emerging Risks), 2022, Final Opinion on Draft Environmental Quality Standards for Priority Substances under the Water Framework Directive - PFAS, European Commission, 25 p.
  •  
  • 49. Smith, K.S., Balistrieri, L.S., and Todd, A.S., 2015, Using biotic ligand models to predict metal toxicity in mineralized systems, Appl. Geochem., 57, 55-72.
  •  
  • 50. Species Sensitivity Distribution (SSD) Toolbox, https://www.epa. gov/comptox-tools/species-sensitivity-distribution-ssd-toolbox [23.12.12]
  •  
  • 51. Toft, G., Jönsson, B.A.G., Bonde, J.P., N©ªrgaard-Pedersen, B., Hougaard, D.M., Cohen, A., Lindh C.H., Ivell, R., Anandlvell, R., and Lindhard, M.S., 2015, Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal leydigcell function, andcryptorchidism and hypospadias in danish boys (1980-1996), Environ. Health. Perspect., 124(1), 151-156.
  •  
  • 52. UNEP (United Nations Environment Programme), 2009, Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the work of its fourth meeting, UNEP/POPS/COP.4/38, Geneva, Switzerland, United Nations Environment Programme.
  •  
  • 53. USEPA (United States Environmental Protection Agency), 2024, Final Recommended Aquatic Life Criteria and Benchmarks for Select PFAS, EPA, Washington, DC, 4p.
  •  
  • 54. Wang, Z., Boucher, J.M., Scheringer, M., Cousins, I.T., and Hungerbuhler, K., 2017, Toward a comprehensive global emission inventory of C4–C10 perfluoroalkanesulfonic acids (PFSAs) and related precursors: focus on the life cycle of C8-based products and ongoing industrial transition, Environ. Sci. Technol., 51(8), 4482-4493.
  •  
  • 55. Wang, Z., Li, Z., Lou, Q., Pan, J., Wang, J., Men, S., and Yan, Z., 2024, Ecological risk assessment of 50 emerging contaminants in surface water of the Greater Bay Area, China, Sci. Total Environ., 907, 168105.
  •  
  • 56. Whitehead, H.D., Venier, M., Wu, Y., Eastman, E., Urbanik, S., Diamond, M.L., Shalin, A., Schwartz-Narbonne, H., Bruton, T.A., Blum, A., Wang, Z., Green, M., Tighe, M., Wilkinson, J.T., McGuinness, S., and Peaslee, G.F., 2021, Fluorinated compounds in North American cosmetics, Environ. Sci. Technol. Lett., 8(7), 538-544.
  •  
  • 57. Wigger, H., Kawecki, D., Nowack, B., and Adam, V., 2020, Systematic consideration of parameter uncertainty and variability in probabilistic species sensitivity distribution, Integr. Environ. Assess. Manag., 16(2), 211-222.
  •  
  • 58. Xiao, F., Sasi, P.C., Yao, B., Kubátová, A., Golovko, S.A., Golovko, M.Y., and Soli, D., 2020, Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon, Environ. Sci. Technol. Lett., 7(5), 343-350.
  •  
  • 59. Xiao, F., Simcik, M.F., Halbach, T.R., and Gulliver, J.S., 2018, Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: migration and implications for human exposure, Water Res., 72, 64-74.
  •  
  • 60. Yue, Y., Li, S., Qian, Z., Pereira, R.F., Zhang, Z., Peng, Y., Park, Y., Lee, J., Doherty, J.J., Clark, J.M., Timme-Laragy, A.R., and Park, Y., 2020, Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans, Food Chem. Toxicol., 145, 111695.
  •  
  • 61. Zhang, J., Tao, H., Shi, J., Ge, H., Li, B., Wang, Y., Zhang, M., and Li, X., 2024, Deriving aquatic PNECs of endocrine disruption effects for PFOS and PFOA by combining species sensitivity weighted distributions and adverse outcome pathway networks, Chemosphere, 364, 140583.
  •  
  • 62. Zheng, Z.-Y. and Ni, H.-G., 2024, Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China, Sci. Total Environ., 906, 167590.
  •  

This Article

  • 2024; 29(5): 27-36

    Published on Oct 31, 2024

  • 10.7857/JSGE.2024.29.5.027
  • Received on Oct 7, 2024
  • Revised on Oct 17, 2024
  • Accepted on Oct 22, 2024

Correspondence to

  • Jinsung An
  • 1Department of Smart City Engineering, Hanyang University, Ansan 15588, South Korea
    2Department of Civil and Environmental Engineering, Hanyang University, Ansan 15588, South Korea
    3Department of Civil and Environmental System Engineering, Hanyang University, Ansan 15588, South Korea

  • E-mail: jsan86@hanyang.ac.kr