• Effects of Soil Amendment on Reclaimed Soil Health Enhancement assessed by Soil Enzyme Activities and Germination/Seedling Growth of Lentil (Lens culinaris)
  • Hyesun ParkㆍBumhan Bae*

  • Department of Civil & Environmental Engineering, Gachon University

  • 토양효소활성과 렌틸 발아/생장으로 평가한 토양첨가제의 정화 처리토 건강성 증진 효과
  • 박혜선ㆍ배범한*

  • 가천대학교 토목환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Acosta-Martinez, V. and Tabatabai, M.A., 2000, Enzyme activities in a limed agricultural soil, Biol. Fertil. Soils, 31, 85-91.
  •  
  • 2. Besalatpour, A., Hajabbasi, M.A., Khoshgoftarmanesh, A.H., and Dorostkar, 2011, Landfarming process effects on biochemical properties of petroleum-contaminated soils, Soil Sediment Contam., 20(2), 234-248.
  •  
  • 3. Bergsveinson et al., 2019, Spatial analysis of a hydrocarbon waste-remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure, Microb. Biotechnol., 12(6), 1199-1209.
  •  
  • 4. Blonska, E., 2010, Enzyme activity in forest peat soils. Folia Forestalia Polonica. Series A. Forestry, 52(1), 20-25.
  •  
  • 5. Borsook, H. and Keighley, G. 1933, Oxidation-reduction potential of ascorbic acid (vitamin C), PNAS, 19(9), 875-878.
  •  
  • 6. Cardoso, E.J.B.N., Vasconcellos, R.L.F., Bini, D., Miyauchi, M.Y.H., Santos, C.A.D., Alves, P.R.L., Paula, A.M.D., Nakatani, A.S., Pereira, J.D.M., and Nogueira, M.A., 2013, Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?, Sci. Agric., 70, 274-289.
  •  
  • 7. Das, S.K. and Varma, A., 2011, Role of enzymes in maintaining soil health, Soil Enzymology, 22, 25-42.
  •  
  • 8. Deng, A., Wu, X., Su, C., Zhao, M., Wu, B., and Luo, J., 2021, Enhancement of soil microstructural stability and alleviation of aluminium toxicity in acidic latosols via alkaline humic acid fertiliser amendment, Chem. Geol., 583, 120473.
  •  
  • 9. Dissanayake, N. and Hoy, J.W., 1999, Organic material soil amendment effects on root rot and sugarcane growth and characterization of the materials, Plant Dis., 83(11), 1039-1046.
  •  
  • 10. Doran, J.W. and Zeiss, M.R., 2000, Soil health and sustainability: managing the biotic component of soil quality, Appl. Soil Ecol., 15(1), 3-11.
  •  
  • 11. Eissenstat, D.M., 1991, On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks, New Phytol., 118, 63-68.
  •  
  • 12. Garbuz, S., Mackay, A., Camps-Arbestain, M., DeVantier, B., and Minor, M., 2021, Biochar amendment improves soil physico-chemical properties and alters root biomass and the soil food web in grazed pastures, Agric. Ecosyst. Environ., 319, 107517.
  •  
  • 13. Garcia-Gil, J.C., Plaza, C., Senesi, N., Brunetti, G., and Polo, A.A., 2004, Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil, Biol. Fertil. Soils, 39, 320-328.
  •  
  • 14. Han, S.H., Jung, M.C., Kim, J.W., Jeon, S.W., Nguyen, Q.T., Yoon, K.W., and Min, S.K., 2020, The occurrence and treatment status of off-site contaminated soils in Korea, J. Soil Groundw. Environ., 25(4), 1-6.
  •  
  • 15. Huang, H., Liu, H., Zhang, R., Chen, Y., Lei, L., Qiu, C., and Xu, H., 2022, Effect of slow-released biomass alkaline amendments oyster shell on microecology in acidic heavy metal contaminated paddy soils, J. Environ. Manage., 319, 115683.
  •  
  • 16. Kandeler, E., Tscherko, D., and Spiegel, H., 1999, Long-term monitoring of microbial biomass, N mineralization and enzyme activities of a chernozem under different tillage management, Biol. Fertil. Soils, 28, 343-351.
  •  
  • 17. Knight, A., Cheng, Z., Grewal, S.S., Islam, K.R., Kleinhenz, M.D., and Grewal, P.S., 2013, Soil health as a predictor of lettuce productivity and quality: a case study of urban vacant lots, Urban Ecosys., 16, 637-656.
  •  
  • 18. Karlen, D.L., Veum, K.S., Sudduth, K.A., Obrycki, J.F., and Nunes M.R., 2019, Soil health assessment: Past accomplishments, current activities, and future opportunities, Soil Tillage Res., 195, 104365.
  •  
  • 19. Kandeler, E. and Gerber, H., 1988, Short-term assay of soil urease activity using colorimetric determination of ammonium, Biol. Fertil. Soils, 6(1), 68-72.
  •  
  • 20. Khati, P., Chaudhary, P., Gangola, S., Bhatt, P., and Sharma, A., 2017, Nanochitosan supports growth of Zea mays and also maintains soil health following growth, Biotech., 7, 1-9.
  •  
  • 21. Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J., and Laughlin, D.C., 2016, Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum, J. Ecol., 104, 1299-1310.
  •  
  • 22. Lee, S.H., Lee, J.H., Jung, W.C., Park, M., Kim, M.S., Lee, S.J., and Park, H., 2020, Changes in soil health with remediation of petroleum hydrocarbon contaminated soils using two different remediation technologies, Sustainability, 12, 10078.
  •  
  • 23. Lee, W. C., Lee, J.H., Lee, S.H., Lee, S.W., Jeon, J.H., Lee, S.H., and Kim, S.O., 2022, Revitalization of total petroleum hydrocarbon contaminated soil remediated by landfarming, Toxics, 10(3), 147.
  •  
  • 24. Lichtenthaler, H.K., 1987, Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350-382.
  •  
  • 25. Lobet, G., Pages, L., and Draye, X., 2011, A novel image-analysis toolbox enabling quantitative analysis of root system architecture, Plant Physiol., 157, 29-39.
  •  
  • 26. Nelson, P.N. and Su, N., 2010, Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils, Soil Res., 48(3), 201-207.
  •  
  • 27. NIFS (National Institute of Forest Science), 2014, Soil and Plant Analytical Method, 11-1400377-000748-01 (in Korean).
  •  
  • 28. O'Brien, P.L., DeSutter, T.M., Casey, F.X.M., Khan, E., and Wick, A.F., 2018, Thermal remediation alters soil properties - a review, J. Environ. Manage., 206,826-835.
  •  
  • 29. OECD, 2003, OECD Guideline for the Testing of Chemicals, Terrestrial Plant Test, 208: Seedling Emergence and Seedling Growth Test.
  •  
  • 30. Pape, A., Switzer, C., Mccosh, N., and Knapp, C., 2015, Impacts of thermal and smouldering remediation on plant growth and soil ecology, Geoderma, 243, 1-9.
  •  
  • 31. Park, H., Kang, S., and Bae, B., 2021, Quantifying inhibitory effects of reclaimed soils on the shoot and root growth of legume plant lentil (Lens culinaris), J. Soil Groundw. Environ., 26(5), 1-8.
  •  
  • 32. Pepper, I.L. and Gerba, C.P., 2004, Environmental microbiology: A laboratory manual, 2nd Ed., Elsevier Academic Press, MA, USA.
  •  
  • 33. Premalatha, K., Botlagunta, N., Santhosh, D., Hiremath, C., Verma, R.K., Shanker, K, Sundaresana, V., and Kalra, A., 2021, Enhancement of soil health, germination and crop productivity in Andrographis paniculata (Burm. f.) Nees, an important medicinal crop by using a composite bio inoculant, J. Plant Nutr., 44, 2331-2346.
  •  
  • 34. Reinersmann, T., Herre, M., Marschner, B., and Heinze, S., 2023, Soil enzyme activity response to substrate and nutrient additions on undisturbed forest subsoil samples, Soil Syst., 7(2), 57.
  •  
  • 35. Riegel, C. and Noe, J.P., 2000, Chicken litter soil amendment effects on soilborne microbes and Meloidogyne incognita on cotton, Plant Dis., 84(12), 1275-1281.
  •  
  • 36. Sainju, U.M., Liptzin, D., and Dangi, S.M., 2022, Enzyme activities as soil health indicators in relation to soil characteristics and crop production, Agrosyst. Geosci. Environ., 5(3), e20297.
  •  
  • 37. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9(7), 671-675.
  •  
  • 38. Stott, D.E., 2019, Recommended soil health indicators and associated laboratory procedures, Soil Health Technical Note No. 450-03. U.S. Department of Agriculture, Natural Resources Conservation Service.
  •  
  • 39. U.S. EPA, 2017, How to evaluate alternative cleanup technologies for underground storage tank sites, EPA 510-B-17-003.
  •  
  • 40. Utobo, E.B. and Tewari, L., 2015, Soil enzymes as bioindicators of soil ecosystem status, Appl. Ecol. Rnviron. Res., 13(1), 147-169.
  •  
  • 41. Wang, C., Li, Z., Shen, J., Li, Y., Chen, D., Bolan, N., Li, Y., and Wu, J., 2023, Biochar amendment increases the abundance and alters the community composition of diazotrophs in a double rice cropping system, Biol. Fertil. Soils, 59(8), 873-886.
  •  
  • 42. Wani, P.A., Khan, M.S., and Zaidi, A. 2008, Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc-amended soil, Agron. Sustainable Dev., 28(3), 449-455.
  •  
  • 43. Zhao, Y. and Naeth, M.A., 2022, Lignite derived humic products and cattle manure biochar are effective soil amendments in cadmium contaminated and uncontaminated soils, Environ. Adv., 8, 100186.
  •  

This Article

  • 2024; 29(6): 1-11

    Published on Dec 31, 2024

  • 10.7857/JSGE.2024.29.6.001
  • Received on Nov 6, 2024
  • Revised on Nov 23, 2024
  • Accepted on Nov 29, 2024

Correspondence to

  • Bumhan Bae
  • Department of Civil & Environmental Engineering, Gachon University

  • E-mail: bhbae@gachon.ac.kr