• Evaluation of Climate Change Vulnerability on Groundwater System using Standardized Groundwater Level Index(SGI)
  • Sung-Ho Song*ㆍGa-Young Hwang

  • Rural Research Institute, Korea Rural Community Corporation

  • 표준지하수위지수를 이용한 지하수계의 기후변화 취약성 평가
  • 송성호*ㆍ황가영

  • 한국농어촌공사 농어촌연구원

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Alegría, A., Diaz, D., Ebi, K.L., Eriksen, S.H., Frieler, K., Jamshed, A., Maharaj, S., McLeman, R., McMillan, J., and Thomas, A., 2022, Climate change 2022: Impacts, adaptation and vulnerability. Technical summary of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva.
  •  
  • 2. Aslam, R.A., Shrestha, S., and Pandey, V.P., 2018, Groundwater vulnerability to climate change: A review of the assessment methodology, Sci. Tot. Environ., 612, 853-875.
  •  
  • 3. Bloomfield, J.P. and Marchant, B.P., 2013, Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769-4787.
  •  
  • 4. Choi, Y., Lee, H., and Kwon, J., 2013, Recent change on frequency-magnitude of summer extreme rainfall events over the Republic of Korea. Geograp. J. Korea, 47, 83-97.
  •  
  • 5. Döll, P., 2009, Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment, Environ. Res. Lett., 4, 1-12.
  •  
  • 6. Fetter, C.W., 1988, Applied Hydrogeology. Merrill Publishing Company, Ohio, p.692.
  •  
  • 7. Kim, D.J., Kang, D.G., Park, J.H., Kim, J.H., and Kim, Y., 2021, Changes in the spatiotemporal patterns of precipitation due to climate change, Korean J. Agri. Forest Method., 23, 424-433.
  •  
  • 8. Koo, M.H., Kim, W., and Song, S.H., 2022, Comparison of surface water and groundwater responses to drought using the standardized precipitation index (SPI), J. Soil Groundwater Environ., 27(5), 1-9.
  •  
  • 9. KRC (Korea Rural Community Corporation), 2024, http://www.groundwater.or.kr
  •  
  • 10. McEvoy, D. J., Huntington, J. L., Abatzoglou, J. T., and Edwards, L. M., 2012, An evaluation of multiscalar drought indices in Nevada and eastern California, Earth Interact., 16(18), 1-8.
  •  
  • 11. McKee, T. B., Doesken, N. J., and Leist, J., 1993, The relationship of drought frequency and duration time scales, 8th Conference on Applied Climatology, 17-22 January 1993, Anaheim, California, USA, p.179-184.
  •  
  • 12. Mishra, A. K. and Singh, V. P., 2010, A review of drought concepts, J. Hydrol., 391(1-2), 202-216.
  •  
  • 13. MoE (Ministry of Environment), 2018, Directive of MoE.
  •  
  • 14. NGIC (Nationl Groundwater Information Center), 2024, http://www.gims.go.kr
  •  
  • 15. Shukla, S. and Wood, A.W., 2008, Use of a standardized runoff index for characterizing hydrologic drought, Geophys. Res. Lett., 35(2), L02405.
  •  
  • 16. Song, S.H., 2018, Assessment of drought effects on groundwater system in rural area using standardized groundwater level index (SGI), J. Soil Groundwater Environ., 23(3), 1-9.
  •  
  • 17. Song, S.H., Park, J., and An, J.G., 2015, Estimation of the available amount of groundwater using classifications of landforms and hydrogeological units in N. Korea, J. Soil Groundwater Environ., 20(7), 23-33.
  •  
  • 18. Vincente-Serrano, S.M. and Lopez-Moreno, J.I., 2005, Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin, Hydro. Earth Syst. Sci., 9(5), 523-533.
  •  

This Article

  • 2024; 29(6): 12-21

    Published on Dec 31, 2024

  • 10.7857/JSGE.2024.29.6.012
  • Received on Nov 25, 2024
  • Revised on Dec 3, 2024
  • Accepted on Dec 12, 2024

Correspondence to

  • Sung-Ho Song
  • Rural Research Institute, Korea Rural Community Corporation

  • E-mail: shsong@ekr.or.kr