• Optimal Injection Dosage Determination of Calcium polysulfide (CPS) for Remediation of Groundwater Contaminated with Complex Heavy Metals with Various Concentration Ranges
  • Jiwon Choi1 ㆍJin Chul Joo2*ㆍKyoungphile Nam3 ㆍHyeon Woo Go4 ㆍ Won Seok Park4 ㆍInwon Lee4 ㆍDong Jun Kim1

  • 1Department of Environmental Engineering, Hanbat National University, Daejeon 34158, Korea
    2Department of Civil and Environmental Engineering, Hanbat National University, Daejeon 34158, Korea
    3Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea
    4Beautiful Environmental Construction Inc., Gyeonggi-do 13207, Korea

  • 다양한 농도의 복합 중금속으로 오염된 지하수 정화를 위한 Calcium polysulfide (CPS)의 최적 주입량 도출
  • 최지원1 ㆍ주진철2*ㆍ남경필3 ㆍ고현우4 ㆍ박원석4 ㆍ이인원4 ㆍ김동준1

  • 1국립한밭대학교 환경공학과
    2국립한밭대학교 건설환경공학과
    3서울대학교 건설환경공학부
    4아름다운환경건설(주)

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Akiyama, M., Shinkai, Y., Unoki, T., Shim, I., Ishii, I., and Kumagai, Y., 2017, The Capture of Cadmium by Reactive Polysulfides Attenuates Cadmium-Induced Adaptive Responses and Hepatotoxicity, Chem. Res. Toxicol., 30(11), 2209-2217.
  •  
  • 2. Aratani, T., Yasuhara, S., Matoba, H., and Yano, T., 1979, Continuous Removal of Heavy metals by the Lime Sulfurated Solution (Calcium Polysulfide) Process, Bull. Chem. Soc. Jpn., 52(1), 218-222.
  •  
  • 3. Asmare, G., Getachew, B., Kassa, T., and Abate, W., 2021, Tannery wastewater treatment by coagulation-flocculation technique using combination of calcium polysulfide and ferrous sulphate, Am. J. Chem. Eng., 9(4), 79-83.
  •  
  • 4. Aspillaga, L., Bautista, D.J., Daluz, S.N., Hernandez, K., Renta, J.A., and Lopez, E.C.R., 2023, Nucleation and crystal growth: Recent advances and fufture trends, Eng. Proc., 56, 22.
  •  
  • 5. Cheng, S., Hong, X., Tang, H., Chu, Y., and Huang, C., 2018, Preparation of calcium polysulfide to remediate groundwater contaminated by hexavalent chromium, Proc. AMMMS, 518-524.
  •  
  • 6. Choi, H.M. and Lee, J.Y., 2009, Green remediation: Choice for low CO2 emission in soil and groundwater remediation, J. Soil Groundw. Environ., 14(1), 11-17.
  •  
  • 7. Chrysochoou, M. and Ting, A., 2011, A kinetic study of Cr(VI) reduction by calcium polysulfide, Sci. Total Environ., 409(19), 4072-4077.
  •  
  • 8. Chrysochoou, M., Ferreira, D.R., and Johnston, C.P., 2010, Calcium polysulfide treatment of Cr(VI)-contaminated soil, J. Hazard. Mater., 179(1-3), 650-657.
  •  
  • 9. Chrysochoou, M., Johnston, C.P., and Dahal, G., 2011, A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron, J. Hazard. Mater., 201-202, 33-42.
  •  
  • 10. Cui, Y., Liao, Y., Sun, Y., Wang, W., Wu, J., Dai, W., and Huang, T., 2024, Advanced XPS-based techniques in the characterization of catalytic materials: A mini-review, Catalysts, 14(9), 595.
  •  
  • 11. Dahlawi, S.M. and Siddiqui, S., 2017, Calcium polysulphide, its applications and emerging risk of environmental pollution—A review article, Environ. Sci. Pollut. Res., 24, 7842-7856.
  •  
  • 12. Dupin, J.C., Gonbeau, D., Vinatier, P., and Levasseur, A., 2000, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys., 2(6), 1319-1324.
  •  
  • 13. EFSA, 2010, Conclusion on the peer reviewed of the pesticide risk assessment of the active substances lime sulfur, J. EFSA, 8(11), 1890.
  •  
  • 14. Esalah, J.O., Weber, M.E., and Vera, J.H., 2000, Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium Di-(n-Octyl) phosphinate, Can. J. Chem. Eng., 78(5), 945-952.
  •  
  • 15. Estay, H., Barros, L., and Troncoso, E., 2021, Metal sulfide precipitation: Recent breakthroughs and future outlooks, Minerals, 11(12), 1385.
  •  
  • 16. Fantauzzi, M., Elsener, B., Atzei, D., Rigoldi, A., and Rossi, A., 2015, Exploiting XPS for the identification of sulfides and polysulfides, RSC Advances, 5, 75953-75963.
  •  
  • 17. Finney, A.R. and Salvalaglio, M., 2023, Theoretical and computational approaches to study crystal nucleation from solution, Wiley, New York, NY.
  •  
  • 18. Fruchter, J., 2002, Peer reviewed: In-situ treatment of chromium-contaminated groundwater, Environ. Sci. & Tech., 36(23), 464A-472A.
  •  
  • 19. Go, H.W., 2023, Application of Calcium polysulfide in various media for remediation of high concentration heavy metal contaminated groundwater, MS diss., Hanbat National University.
  •  
  • 20. Gross, S., Vittadini, A., and Dengo, N., 2016, Functionalisation of colloidal transition metal sulphides nanocrystals: A fascinating and challenging playground for the chemist, Crystals, 7(4), 110.
  •  
  • 21. Hillis, B.G., Losey, B.P., Weng, J., Ghaleb, N., Hou, F., and Martin, J.D., 2017, From rate measurements to mechanistic data for condensed matter reactions: A case study using the crystallization of [Zn(OH2)6][ZnCl4], Crystals, 7(1), 11.
  •  
  • 22. Hu, S., Li, D., Man, Y., Wen, Y., and Huang, C., 2021, Evaluation of remediation of Cr(VI)-contaminated soils by calcium polysulfide: Long-term stabilization and mechanism studies, Sci. Total Environ., 790, 148140.
  •  
  • 23. Huang, C.Y., Cheng, P.C., Chang, J.H., Wan, Y.C., Hong, X.M., and Cheng, S.F., 2021, Feasibility of remediation lead, Nickel, Zinc, Copper, and cadmium-contaminated groundwater by calcium sulfide, Water, 13(16), 2266.
  •  
  • 24. Jo, Y.D., Kim, H.S., and Ahn, J.W., 2007, Precipitation characteristics of heavy metal ions in coal mine drainage, J. Miner. Soc. Korea, 20(2), 125-134.
  •  
  • 25. Jung, M.C. and Jung, M.Y., 2006, Evaluation and management method of environmental contamination from abandoned metal mines in Korea, J. Korean Soc. Miner. Energy Resour. Eng., 43(5), 283-394.
  •  
  • 26. Kapusta, P. and Sobczyk, L., 2015, Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions, Sci. Total. Environ., 536(1), 517-526.
  •  
  • 27. Kotula, P.G., Keenan, M.R., and Michael, J.R., 2003, Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool, Microscopy and Microanalysis., 9(1), 1-17.
  •  
  • 28. Kubier, A., Wilkin, R.T., and Pichler, T., 2019, Cadmium in Soils and Groundwater: A Review, Appl. Geochem., 108, 104388.
  •  
  • 29. Lee, G.M., Kim, G.R., Choi, S.K., and Lee, T.J., 2020, A study on adsorption of heavy metals with zeolite and FeS Media, J. Korean. Soc. Environ. Eng., 42(7), 349-359.
  •  
  • 30. Lee, S.W., Kim, J.J., Park, M.J., Lee, S.H., and Kim, S.O., 2015, Human risk assessment of arsenic and heavy metal contamination and estimation of remediation concentration within abandoned metal mine area, J. miner. Soc. Korea, 28(4), 309-323.
  •  
  • 31. Leite, E.R. and Ribeiro, C., 2011, Crystallization and Growth of Colloidal Nanocrystals, Springer, New York, US.
  •  
  • 32. Lewis, A.E., 2010, Review of Metal Sulfide Precipitation, Hydrometallurgy, 104, 222-234.
  •  
  • 33. Lewis, A. E., Seckler, M., Kramer, H., and Rosmalen, G., 2015, Industrial crystallization: Fundamentals and Applications. England.
  •  
  • 34. Li, Y.Y. and Zhang, T.T., 2021, Stability properties of chromium in Cr(VI)-contaminated soil stabilized by calcium polysulfide (CaS5), Nature Environ. & Pollut. Tech., 20(1), 377-383.
  •  
  • 35. Luther, G.W., Theberge, S.M., and Rickard, D.T., 1999, Evidence for aqueous clusters as intermediates during zinc sulfide formation, Geochimica et Cosmochimica Acta, 63(19-20), 3159-3169.
  •  
  • 36. McGinty, J., Yazdanpanah, N., Price, C., ter Horst, J.H., and Sefcik, J., 2020, Nucleation and crystal growth in continuous crystallization, handbook of continuous crystallization, The Royal Soc. of Chem., 1-16.
  •  
  • 37. Migdisov, A.A., Willians-Jones, A.E., Lakshtanov, L.Z., and Alekhin, Y.V., 2002, Estimates of the second dissociation constant of H2S from the surface sulfidation of crystalline sulfur, Geochimina et Cosmochimica Acta, 66(10), 1713-1725.
  •  
  • 38. Mpouras, T., Papassiopi, N., Lagkouvardos, K., Mystrioti, C., and Dermatas, D., 2020, Evaluation of calcium polysulfide as a reducing agent for the restoration of a Cr(VI)-contaminated aquifer, Bull. Environ. Contam. Toxicol., 105, 45-52.
  •  
  • 39. Pohl, A., 2020, Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents, Water Air Soil Pollut., 231, 503.
  •  
  • 40. Prokkola, H., Nurmesniemi, E.-T., and Lassi, U., 2020, Removal of metals by sulphide precipitation using Na2S and HS− solution, ChemEngineering, 4(3), 51.
  •  
  • 41. Qian, Y., da Silva, A., Yu, E., Anderson, C.L., Liu, Y., Theis, W., Ercius, P., and Xu, T., 2021, Crystallization of nanoparticles induced by precipitation of trace polymeric additives, Nature Communications, 12(1), 2767.
  •  
  • 42. Sankhla, M.S. and Kumar, R., 2019, Contaminant of heavy metals in groundwater & its toxic effects on human health & environment, Int. J. Environ. Sci. Nat. Resour., 18(5), 555996.
  •  
  • 43. Simon, P., Baldovino-Medrano, V.G., and Wojcieszak, R., 2022, X-Ray photoelecrton spectroscopy (XPS): Principles and application for the analysis of photoactive materials, Springer, 249-271.
  •  
  • 44. Soya, K., Mihara, N., Kuchar, D., Kubota, M., Matsuda, H., and Fukuta, T., 2008, Selective sulfidation of copper, zinc and nickel in plating wastewater using calcium sulfide, World Acad. Sci. Eng. Technol., 44, 356-362.
  •  
  • 45. Teh, C.Y., Budiman, P.M., Shak, K.P.Y., and Wu, T.Y., 2016, Recent advancement of coagulation-flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res., 55(14), 4363-4389.
  •  
  • 46. Tu, C., Guan, F., Sun, Y., Guo, P., Liu, Y., Li, L., Scheckel, K.G., and Luo, Y., 2018, Stabilizing effects on a cadmium polluted coastal wetland soil using calcium polysulphide, Geoderma, 332, 190-197.
  •  
  • 47. U.S. DOE, 2007, Internet ref. https://www.ibl.gov/ERSP
  •  
  • 48. U.S. EPA, 1999, Field applications of in situ remediation technologies: Permeable reactive barriers, DIANE Publishing.
  •  
  • 49. U.S. EPA, 2000, Permeable Reactive Barriers for Inorganics, Washington, DC, 1-55.
  •  
  • 50. U.S. FRTR, 2024, https://www.frtr.gov/matrix/Groundwater-Pump-and-Treat/
  •  
  • 51. Wielinski, J., Huang, X., and Lowry, G.V., 2024, Characterizing the stoichiometry of individual metal sulfide and phosphate colloids in soils, sediments, and industrial processes by inductively coupled plasma time-of-flight mass spectrometry, Environ. Sci. Technol., 58, 12113-12122.
  •  
  • 52. Wright, K.E., Hartmann, T., and Fujita, Y., 2011, Inducing mineral precipitation in groundwater by addition of phosphate, Geochemical Transactions, 12, 8.
  •  
  • 53. XPS Database, XPS Reference Database, https://xpsdatabase.net/
  •  
  • 54. XPS Periodic Table, Thermo Fisher Scientific., 2024, https://www.thermofisher.com/kr/ko/home/materials-science/learning-center/periodic-table/non-metal/oxygen.html
  •  
  • 55. Yahikozawa, K., Aranani, T., Ito, R., Supo, T., and Yano, T., 1978, Kinetic studies on the lime sulfurated solution (Calcium Polysulfide) process for removal of heavy metals from wastewater, Bull. Chem. Soc. Jpn., 51(2), 613-617.
  •  
  • 56. Yin, Y. and Allen, H.E., 1999, In situ chemical treatment, ground-water remediation technologies analysis center (GWRTAC), Pittsburgh, PA, 1-60.
  •  
  • 57. Yoon, S., Jeong, S., Moon, C., and Nam, K., 2024, Removal of cadmium and zinc by calcium polysulfide in acidic groundwater: Injection ratio and precipitation mechanism, Chemosphere, 364, 143219.
  •  
  • 58. Zhang, T., Wang, T., Wang, W., Liu, B., and Liu, Y., 2020, Reduction and stabilization of Cr(VI) in soil by using calcium polysulfide: Catalysis of natural iron oxides, Environmental Research, 190, 109992.
  •  
  • 59. Zhang, X., Wu, H., Fu, E., and Wang, Y., 2019, In-depth characterization of secondary phases in Cu2ZnSnS4 film and its application to solar cells, Nanomaterials, 9(6), 855
  •  
  • 60. Zhao, X., Joo, J.C., Kim, D., Lee, J.K., and Kim, J.Y., 2016, Estimation of the seedling vigor index of sunflowers treated with various heavy metals, J. Bioremediat. Biodegrad., 7(3),353.
  •  
  • 61. Zhao, X., Joo, J.C., Lee, J.K., and Kim, J.Y., 2019, Mathematical estimation of heavy metal accumulations in helianthus annuus L. with a sigmoid heavy metal uptake model, Chemosphere, 220, 965-973.
  •  
  • 62. Zhong, L., Qafoku, N.P., Szecsody, J.E., Dresel, P.E., and Zhang, Z.F., 2009, Foam delivery of calcium polysulfide to the vadose zone for chromium(VI) immobilization: A laboratory evaluation, Vadose Zone J., 8(4), 976-985.
  •  

This Article

  • 2024; 29(6): 49-59

    Published on Dec 31, 2024

  • 10.7857/JSGE.2024.29.6.049
  • Received on Oct 19, 2024
  • Revised on Nov 18, 2024
  • Accepted on Nov 22, 2024

Correspondence to

  • Jin Chul Joo
  • Department of Civil and Environmental Engineering, Hanbat National University, Daejeon 34158, Korea

  • E-mail: jincjoo@hanbat.ac.kr