• Application of a 3D Hydrogeological Model for Analyzing Groundwater Flow Path in Contaminated Area
  • Dongwon ParkㆍChaeryung OhㆍHyegang KimㆍChihyung LeeㆍTae Beom Kim*

  • Intellegeo Co. Ltd., Seoul 08390, Korea

  • 오염지역에서의 지하수 유동 경로 해석을 위한 3차원 수리지질모델의 활용
  • 박동원ㆍ오채령ㆍ김혜강ㆍ이치형ㆍ김태범*

  • ㈜인텔리지오

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Töllinperä aquifer in the Hitura nickel mine area, Finland - providing the framework for restoration and protection of the aquifer, Bull. Geol. Soc. Finl., 76(1-2), 5-17.
  •  
  • 2. Cheong, Y.W., Min J.S., and Kwon, K.S., 1998, Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, south Korea, J. Geochem. Explor., 64(1-3), 147-152.
  •  
  • 3. Choo, C.O., Jeong, G.C. and Lee, J.K., 2007, Characteristics of dalseong acid mine drainage and the role of schwertmannite, The Journal of Engineering Geology, 17(2), 187-196.
  •  
  • 4. Diersch, H.-J.G., 2014. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. Springer-Verlag, Berlin, Germany.
  •  
  • 5. Jung, M.C., 1996, Cadmium, Cu, Pb and Zn contamination of stream sediments and waters in a stream around the Dalsung Cu-W mine, Korea. Econ. Environ. Geol., 29(3), 305-313.
  •  
  • 6. Kim, D., Kim, G., Kim, D., Jung, S., and Baek, H., 2018, Prediction of the groundwater inflow by three-dimensional hydrogeologic modelling at an underground Mine, J. Korean Soc. Miner. Energy Resour. Eng., 55(5), 383-394.
  •  
  • 7. Kim, D.M., Kim, D.K., and Lee, S.H., 2018, Manganese coprecipitation/adsorption behaviour and sludge volume ratios in chemical treatment systems for mine drainage: a review of the literature and a pilot-scale experiment, Water Environ. J., 32(2), 173-178.
  •  
  • 8. Kim, D.M., Kwon, H.R., and Im, D.G., 2023, Determination of contamination sources and geochemical behaviors of metals in soil of a mine area using Cu, Pb, Zn, and S isotopes and positive matrix factorization, J. Hazard. Mater., 447,130827.
  •  
  • 9. Kim, D.M., Kwon, H.R. Im, D.G., Park, D.W., and Yun, S.T., 2024, Determination of contamination sources and geochemical reactions in groundwater of a mine area using Cu, Zn, and S-O isotopes, Chemosphere, 361, 142567.
  •  
  • 10. Kim, D.M., Oh Y.S. and Lee, J.S., 2020, ¥ä34S and ¥ä18O of sulfates and Zn/Cd ratios reveal the cause of soil and groundwater contamination in metalliferous mining areas, J. Geochem. Explor., 209, 106437.
  •  
  • 11. Kim, D.M., Oh Y.S., Park, H.S., Im, D.G., Lim, W.L., Kwon, H.R., and Lee, J.H., 2021, Steel slag-limestone reactor with resistance to Fe: laboratory and pilot scale evaluations of Mn treatment efficiency, In Proceedings of 2021 IMWA Conference (online) - ¡°Mine Water Management for Future Generations¡±, IMWA Conf., Cardiff, Wales, United Kingdom, p.243-248.
  •  
  • 12. Lee, J.E., Kim, Y., and Choo, C.O., 2003, Hydrogeochemistry and comparison of leachate and effluent from the Dalsung mine, J. Geol. Soc. Korea, 39(4), 519-533.
  •  
  • 13. Lee, M., Park, S., Ko, H., Jeong, Y., and Heo, S.H., 2023, A case study on predicting and analyzing inflow sources of underground water in a limestone mine, Tunn Undergr Space, 33(5), 388-398.
  •  
  • 14. Mine Damage Safety, https://www.komir.or.kr/eng/contents/181 [accessed 25.10.24].
  •  
  • 15. MIRECO (Korea Mine Reclamation Corporation), 2015, Development of Treatment Processes According to Water Quality Characteristics of Mine Drainages, Technical report 2015-49, MIRECO, Wonju, Republic of Korea.
  •  
  • 16. MIRECO (Korea Mine Reclamation Corporation), 2016, Development of Treatment Processes According to Water Quality Characteristics of Mine Drainages, Technical report 2016-50, MIRECO, Wonju, Republic of Korea.
  •  
  • 17. MOCT (Ministry Of Construction & Transportation) and K-water (Korea Water Resources Corporation), 2004, Basic Groundwater Survey Report for the Daegu Area, K-water, Daejeon, republic of Korea.
  •  
  • 18. Moore, C. and Doherty, J., 2005, The role of the calibration process in reducing model predictive error, Water Resour. Res., 41(5), W05050.
  •  
  • 19. Park, J.Y. and Kihm, J.H., 2021, Numerical evaluation of groundwater contaminant by backfilling in the abandoned mine, J. Geol. Soc. Korea, 57(2), 227-242.
  •  
  • 20. Schulze-Makuch, D., 2005, Longitudinal Dispersivity Data and Implications for Scaling Behavior, Ground Water, 43(3), 443-456.
  •  
  • 21. Stollberg, R., 2013, Groundwater Contaminant Source Zone Identification at an Industrial and Abandoned Mining Site - a Forensic Backward-in-Time Modelling Approach, Universitäts-und Landesbibliothek Sachsen-Anhalt, Halle (Saale), Deutschland.
  •  
  • 22. Tomiyama, S., Igarashi, T., Tabelin, C.B., Tangviroon, P., and Ii, H., 2020, Modeling of the groundwater flow system in excavated areas of an abandoned mine, J. Contam. Hydrol., 230, 103617.
  •  
  • 23. Yoon, Y.K., 2011, Evaluation of groundwater flow through rock mass around development dpenings of mine, Tunn Undergr Space, 21(5), 370-376.
  •  
  • 24. Zech, A., Attinger, S., Cvetkovic, V., Dagan, G., Dietrich, P., Fiori, A., Rubin, Y., and Teutsch, G., 2015, Is unique scaling of aquifer macrodispersivity supported by field data, Water Resour. Res., 51(9), 7662-7679.
  •  

This Article

  • 2024; 29(6): 60-70

    Published on Dec 31, 2024

  • 10.7857/JSGE.2024.29.6.060
  • Received on Nov 12, 2024
  • Revised on Nov 18, 2024
  • Accepted on Nov 22, 2024

Correspondence to

  • Tae Beom Kim
  • Intellegeo Co. Ltd., Seoul 08390, Korea

  • E-mail: geo108@naver.com