• Assessment of the Mass Production of Ni/Fe Bimetallic Composite Supported by Natural Zeolites for in-situ TCE Degradation
  • Minhee Choi1 ㆍPolice Anil Kumar Reddy2 ㆍSunho Yoon2 ㆍSungjun Bae2* 

  • 1Department of Environmental Engineering, Graduate School of Konkuk University, Seoul 05029, Korea
    2Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Korea

  • 천연제올라이트에 담지된 Ni/Fe 이중금속 복합소재 대량생산 및 TCE 원위치 정화 적용 가능성 연구
  • 최민희1 ㆍPolice Anil Kumar Reddy2 ㆍ윤선호2 ㆍ배성준2*

  • 1건국대학교 대학원 환경공학과
    2건국대학교 사회환경공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ahn, J.Y., Kim, C.Y., Hwang, K.Y., Jun, S.C., and Hwang, I.S., 2014, Field Study on Application of Reactive Zone Technology Using Zero-Valent Iron Nanoparticles for Remediation of TCE-Contaminated Groundwater, J. Soil Groundw. Environ., 19(6), 80-90.
  •  
  • 2. Ates, A., 2018, Effect of alkali-treatment on the characteristics of natural zeolites with different compositions, J. Colloid Interface Sci., 523, 266-281.
  •  
  • 3. Choi, J.W., Lee, S.H., and Lee, H.S., 2019, Ecotoxicity Assessment of 1,4-Dioxane and Dichloromethane in Industrial Effluent Using Daphnia magna, Appl. Chem. Eng., 30(4), 466-471.
  •  
  • 4. Ezzatahmadi, N., Ayoko, G.A., Millar, G.J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., and Xi, Y., 2017, Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review, Chem. Eng. J., 312, 336-350.
  •  
  • 5. Elliott, D.W. and Zhang, W.X., 2001, Field assessment of nanoscale bimetallic particles for groundwater treatment, Environ. Sci. Technol., 35(24), 4922-4926.
  •  
  • 6. El-Arish, N.A.S., Zaki, R.S.R.M., Miskan, S.N., Setiabudi, H.D., and Jaafar, N.F., 2022, Adsorption of Pb(II) from aqueous solution using alkaline-treated natural zeolite: Process optimization analysis, Total Environ. Res., Themes 3-4, 100015.
  •  
  • 7. Gao, Y., Wang, F., Wu, Y., Naidu, R., and Chen, Z., 2016, Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles, Chem. Eng. J., 285, 459-466.
  •  
  • 8. Huang, B., Lei, C., Wei, C., and Zeng, G., 2014, Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies, Environ. Int., 71, 118-138.
  •  
  • 9. He, Y., Lin, H., Dong, Y., Li, B., Wang, L., Chu, S., Luo, M., and Liu, J., 2018, Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: Synergistic effect and mechanism, Chem. Eng. J., 347, 669-681.
  •  
  • 10. Hwang, Y.H., Lee, W.T., and Andersen, H.R., 2016, Modification of Indophenol Reaction for Quantification of Reduction Activity of Nanoscale Zero Valent Iron, J. Korean Soc. Environ. Eng., 38(12), 667-675.
  •  
  • 11. Hwang, Y.H., Mines, P.D., Lee, W.T., and Andersen, H.R., 2016, Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon, J. Korean Soc. Environ. Eng., 38(9), 521-527.
  •  
  • 12. He, L., Wang, S., Luo, F., Liu, Z., Wu, Y., Yang, Y., and Chen, Z., 2024, Unravelling the bifunctional role of biochar in promoting nZVI/Ni towards complete dechlorination of trichloroethylene: Not only a carbonouces support, Chem. Eng. J., 481, 148634.
  •  
  • 13. Kaliya Perumal Veerapandian, S., De Geyter, N., Giraudon, J.M., Morin, J.C., Esbah Tabaei, P.S., De Weireld, G., Laemont, A., Leus, K., Van Der Voort, P., Lamonier, J.F., and Morent, R., 2022, Effect of non-thermal plasma in the activation and regeneration of 13X zeolite for enhanced VOC elimination by cycled storage and discharge process, J. Clean. Prod., 364, 132687.
  •  
  • 14. Kocur, C.M., Chowdhury, A.I., Sakulchaicharoen, N., Boparai, H.K., Weber, K.P., Sharma, P., Krol, M.M., Austrins, L., Peace, C., Sleep, B.E., and O¡¯Carroll, D.M., 2014, Characterization of nZVI mobility in a field scale test, Environ. Sci. Technol., 48(5), 2862-2869.
  •  
  • 15. Kumar, M.A., Bae, S.J., Han, S.H., Chang, Y.S., and Lee, W.J., 2017, Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni, J. Hazard. Mater., 340, 399-406.
  •  
  • 16. Li, Y., Li, X., Han, D., Huang, W., and Yang, C., 2017, New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo- and tetrachlorobisphenol A, Chem. Eng. J., 311, 173-182.
  •  
  • 17. Li, Z., Wang, L., Wu, J., Xu, Y., Wang, F., Tang, X., Xu, J., Ok, Y.S., Meng, J., and Liu, X., 2020, Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses, Environ. Pollut., 260, 114098.
  •  
  • 18. Lee, S.H. and Lee, H.S., 2014, Comparison between Ecotoxicity using Daphnia magna and Physicochemical Analyses of Industrial Effluent, J. Environ. Sci. Intl., 23(7), 1269-1275.
  •  
  • 19. Li, Q., Chen, Z., Wang, H., Yang, H., Wen, T., Wang, S., Hu, B., and Wang, X., 2021, Removal of organic compounds by nanoscale zero-valent iron and its composites, Sci. Total Environ., 792, 148546.
  •  
  • 20. Mdlovu, N.V., Lin, K.S., Dwitya, K.S., Chen, C.Y., and Chiang, C.L., 2018, Decontamination of 1,2-Dichloroethane DNAPL in Contaminated Groundwater by Polymer-Modified Zero-Valent Iron Nanoparticles, Top. Catal., 61, 1653-1664.
  •  
  • 21. Police, A.K.R., Senthamaraikannan, T.G., Lim, D.H., Choi, M.H., Yoon, S.H., Shin, J.G., Chon, K.M., and Bae, S.J., 2022, Unveiling the positive effect of mineral induced natural organic matter (NOM) on catalyst properties and catalytic dechlorination performance: An experiment and DFT study, Water Res., 222, 118871.
  •  
  • 22. Pavelić, S.K., Medica, J.S., Gumbarević, D., Filošević, A., Pržulj, N., and Pavelić, K., 2018, Critical review on zeolite clinoptilolite safety and medical applications in vivo, Front. Pharmacol., 9, 1-15.
  •  
  • 23. Ravikumar, K.V.G., Dubey, S., pulimi, M., Chandrasekaran, N., and Mukherjee, A., 2016, Scale-up synthesis of zero-valent iron nanoparticles and their applications for synergistic degradation of pollutants with sodium borohydride, J. Mol. Liq., 224, 589-598.
  •  
  • 24. Stefaniuk, M., Oleszczuk, P., and Ok, Y.S., 2016, Review on nano zerovalent iron (nZVI): From synthesis to environmental applications, Chem. Eng. J., 287, 618-632.
  •  
  • 25. Tian, H., Liang, Y., Yang, D., and Sun, Y., 2020, Characteristics of PVP–stabilised NZVI and application to dechlorination of soil–sorbed TCE with ionic surfactant, Chemosphere, 239, 124807.
  •  
  • 26. Valdés, H., Riquelme, A.L., Solar, V.A., Azzolina-Jury, F., and Thibault-Starzyk, F., 2021, Removal of chlorinated volatile organic compounds onto natural and Cu-modified zeolite: The role of chemical surface characteristics in the adsorption mechanism, Sep. Purif. Technol., 258, 118080.
  •  
  • 27. Zhang, Y.F., Zhang, C.H., Xu, J.H., Li, L., Li, D., Wu, Q., and Ma, L.M, 2022, Strategies to enhance the reactivity of zero-valent iron for environmental remediation: A review, J. Environ. Manage., 317, 115381.
  •  
  • 28. Zhang, L., Guo, Y., Xie, R., Chen, L., Jiang, W., and Jiang, X., 2020, An Efficient Catalytic Composite Material of Mesoporous Carbon Loaded Nano Zero-Valent Iron as an Activator for the Degradation of Sulfadiazine, Water. Air. Soil Pollut., 231, 375.
  •  

This Article

  • 2024; 29(6): 94-106

    Published on Dec 31, 2024

  • 10.7857/JSGE.2024.29.6.094
  • Received on Oct 25, 2024
  • Revised on Nov 18, 2024
  • Accepted on Dec 4, 2024

Correspondence to

  • Sungjun Bae
  • Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Korea

  • E-mail: bsj1003@konkuk.ac.kr