• Evaluation of Pollution Characteristics using Nitrate Background Levels, Nitrate Pollution Index, and Principal Component Analysis of Groundwater in Rural Areas, Hongsung-gun
  • Yeonkyeong Choi1,2ㆍKyung-Seok Ko1,2*ㆍHyowon An1,2ㆍHyunjeong Shin3ㆍSoojeong Jeong3 ㆍJeongah Lee3

  • 1Groundwater Environment Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)
    2Geological Science, University of Science and Technology (UST)
    3Chungnam Regional Headquarters, Korea Rural Community Corporation

  • 지하수 질산염 배경농도 및 오염지수와 주성분분석을 이용한 농촌지역 홍성군의 지하수 오염특성 평가
  • 최연경1,2ㆍ고경석1,2*ㆍ안효원1,2ㆍ신현정3 ㆍ정수정3 ㆍ이정아3

  • 1한국지질자원연구원
    2과학기술연합대학원대학교
    3한국농어촌공사 충남지역본부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abascal, E., Gómez-Coma, L., Oritz, I., and Oritz, A., 2022, Global diagnosis of nitrate pollution in groundwater and review of removal technologies, Sci. Total Environ., 810, 152233.
  •  
  • 2. Almasri, M.N., 2007, Nitrate contamination of groundwater: A conceptual management framework, Environ. Impact Assess. Rev., 27, 220-242.
  •  
  • 3. An, H.S., Jee, S.W., Lee, S.J., Hyun, Y.J., Yoon, H.S., and Kim, R.H., 2015, Suggestion of a groundwater quality management framework using threshold values and trend analysis, J. Soil Groundwater Environ., 20, 112-120.
  •  
  • 4. Bahrami, M., Zarei, A.R., and Rostami, F., 2020, Temporal and spatial assessment of groundwater contamination with nitrate by nitrate pollution index (NPI) and GIS (case study: Fasarud Plain, southern Iran), Environ. Geochem. Health., 42, 3119-3130.
  •  
  • 5. Biddau, R., Cidu, R., Lorrai, M., and Mulas, M.G., 2017, Assessing background values of chloride, sulfate and fluoride in groundwater: a geochemical-statistical approach at a regional scale, J. Geochem. Explor., 181, 243-255.
  •  
  • 6. Buškulić, P., Parlov, J., Kovač, Z., and Nakić, Z., 2023, Estimation of nitrate background value in groundwater under the long-term human impact, Hydrol., 10, 63.
  •  
  • 7. Celestino, A.E.M., Leal, J.A.R., Cruz, D.A.M., Vargas, J.T., Bashulto, J.D.L., and Ramírez, J.M., 2019, Identification of the hydrogeochemical processes and assessment of groundwater quality, using multivariate statistical approaches and water quality index in a wastewater irrigated region, Water., 11, 1702.
  •  
  • 8. Coetsiers, M., Blaser, P., Martens, K., and Walraevens, K., 2009, Natural background levels and threshold values for groundwater in fluvial Pleistocene and Tertiary marine aquifers in Flanders, Belgium, Enviorn Geol., 57, 1155-1168.
  •  
  • 9. Cruz, J.V. and Andrade, C., 2015, Natural background groundwater composition in the Azores archipelago (Portugal): A hydrogeochemical study and threshold value determination, Sci. Total Environ., 520, 127-135.
  •  
  • 10. El Mountassir, O., Bahir, M., Ouazar, D., Chehbouni, A., and Carreira, P.M., 2022, Temporal and spatial assessment of groundwater contamination with nitrate using nitrate pollution index (NPI), groundwater pollution index (GPI), and GIS (case study: Essaouira basin, Morocco), Environ Sci Pollut Res., 29, 17132-17149.
  •  
  • 11. Gemitzi, A., 2012, Evaluating the anthropogenic impacts on groundwaters; a methodology based on determination of matural background levels and threshold values, Enviorn Earth Sci., 67, 2223-2237.
  •  
  • 12. Gutiérrez, M., Biagioni, R.N., Alarcón-Herrera, M. T., and Rivas-Lucero, B. A., 2018, An overview of nitrate sources and operating processes in arid and semiarid aquifer systems, Sci. Total Environ., 624, 1513-1522.
  •  
  • 13. Ha, K., Lee, E., An, H., Kim, S., Park, C., Kim, G.-B., and Ko, K.-S., 2021, Evaluation of seasonal groundwater quality changes associated with groundwater pumping and level fluctuations in an agricultural area, Korea, Water., 13, 51.
  •  
  • 14. Harter, T., Davis, H., Mathews, M.C., and Meyer, R.D., 2002, Shallow groundwater quality on dairy farms with irrigated forage crops, J. contam Hydrol, 55(3-4), 287-315.
  •  
  • 15. Heaton, T.H., Stuart, M.E., Sapiano, M., and Sultana, M.M., 2012, An isotope study of the sources of nitrate in Malta¡¯s groundwater, Hydrol., 414, 244-254.
  •  
  • 16. Hongsung-gun, 2023, Groundwater management plan of Hongsung-gun.
  •  
  • 17. Jeon, S.R., Park, S.J., Kim, H.S., Jung, S.K., Lee, Y.U., and Lee, J.I., 2011, Hydrogeochemical characteristics and estimation of nitrate contamination source of groundwater in the Sunchang area, Korea, J. Geol. Soci. Korea., 47(2), 185-197.
  •  
  • 18. Jolliffe, I.T., 2002, Principal component analysis for special types of data (pp. 338-372). Springer New York.
  •  
  • 19. Kou, X., Ding, J., Li, Y., Li, Q., Mao, L., Xu, C., Zheng, Q., and Zhuang, S., 2021, Tracing nitrate sources in the groundwater of an intensive agricultural region, Agri. Water Manage., 250, 106826.
  •  
  • 20. Ki, M.G., Koh, D.C., Yoon, H.S., and Kim, H.S., 2013, Characterization of nitrate contamination and hydrogeochemistry of groundwater in an agricultural area of northeastern Hongseong, J. Soil Groundwater Environ., 18(3), 33-51.
  •  
  • 21. Ki, M.G., 2013, Characterization of nitrate contamination and vulnerability assessment of groundwater in an agricultural area (northeasten Hongseong), Unpublished MS thesis, Chonbuk National University, 114p.
  •  
  • 22. Kim, K.H., Yun, S.T., Chae, G.T., Choi, B.Y., Kim, S.O., Kim, K.J., Kim, H.S., and Lee, C.W., 2002, Nitrate contamination of alluvial groundwaters in the Keum River watershed area: Source and behaviors of nitrate, and suggestion to secure water supply, J. Eng. Geol., 12(4), 471-484.
  •  
  • 23. Kim, K.H., Yun, S.T., Chae, G.T., Kim, S.Y., Kwon, J.S., and Koh, Y.K., 2006, Hydrogeochemical evolution related to high fluoride concentrations in deep bedrock groundwaters, Korea, Korea Eco. Environ. Geol., 39(1), 27-38.
  •  
  • 24. Kim, K.-H., Yun, S.-T., Kim, H.-K., and Kim, J.-W., 2015a, Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches, J. Geochem. Explor., 148, 196-205.
  •  
  • 25. Kim, K.-H., Yun, S.-T., Mayer, B., Lee, J.-H., Kim, T.-S., and Kim, H.-K., 2015b, Quantification of nitrate sources in groundwater using hydrochemical and dual isotopic data combined with a Bayesian mixing model, Agr. Ecosys. Environ., 199, 369-381.
  •  
  • 26. Ko, K.-S., Kim, Y., Koh, D.-C., Lee, K.-S., Lee, S.-G., Kang, C.-H., Seong, H.-J., and Park, W.-B., 2005, Multivariate statistical analysis for groundwater mixing ratios around underground storage caverns in Korea, Econ. Environ. Geol., 38, 435-450.
  •  
  • 27. Ko, K.-S., Lee, J., Lee, K.-K., and Chang, H.W., 2010, Multivariate statistical analysis for groundwater mixing ratios around underground storage caverns in Korea, Carb. Evap., 25, 35-42.
  •  
  • 28. Lee, E.J., Woo, N.C., Lee, B.S., and Kim, Y.B., 2008, Variation in nitrate contamination of shallow groundwater in a farmland in Gyeonggi-do, Korea, Econ. Environ. Geol., 41(4), 393-403.
  •  
  • 29. Lee, J., Ko, K.-S., Kim, J.-M., and Chang, H.-W., 2008, Multivariate statistical analysis of underground gas storage caverns on groundwater chemistry in Korea, Hydrol. Process., 22, 3410-3417.
  •  
  • 30. Liu, A., Ming, J., and Ankumah, R.O., 2005, Nitrate contamination in private wells in rural Alabama, United States, Sci. Total, Enviorn, 346(1-3), 112-120.
  •  
  • 31. Mendizabal, I., Baggelaar, P.K., and Stuyfzand, P.J., 2012, Hydrochemical trends for public supply well fields in The Netherlands (1898-2008), natural backgrounds and upscaling to groundwater bodies, J. Hydrol., 450, 279-292.
  •  
  • 32. Ministry of Construction & Transportation, Korea Water Resources Corporation, and Korea Institute of Geoscience & MIneral Resources, 2005, Basic Groundwater Survey of Hongseong.
  •  
  • 33. Ministry of Environment, 2022, 2022 LandCoverMap. https://egis.me.go.kr/.
  •  
  • 34. Ministry of Environment, 2023, The 4th Basic Groundwater Management Plan.
  •  
  • 35. Moon, S.-H., Lee, J., Kim, K., and Ju, J.-w., 2022, Estimation of groundwater quality and background level in Boseong area, South Korea, Korea Econ. Environ. Geol., v.55, p.29-43.
  •  
  • 36. Müller, D., Blum, A., Hart, A., Hookey, J., Kunkel, R., Scheidleder, A., Tomlin, C., and Wendland, F., 2006, Final proposal for a methodology to set up groundwater threshold values in Europe. Deliverable D18, BRIDGE project, 63.
  •  
  • 37. Nieto, P., Custodio, E., and Manzano, M., 2005, Baseline groundwater quality: a European approach, Environ. Sci. Policy., 8(4), 399-409.
  •  
  • 38. Obeidat, M.M., Awawdeh, M., Al-Rub, F.A., and Al-Ajlouni, A., 2012, An innovative nitrate pollution index and multivariate statistical investigations of groundwater chemical quality of Umm Rijam Aquifer (B4), North Yarmouk River Basin, Jordan. Vouddouris K, Voutsa D. Water Quality Monitoring and Assessment, Croatia: InTech., 169-188.
  •  
  • 39. Panneerselvam, B., Karuppannan, S., and Muniraj, K., 2020, Evaluation of drinking and irrigation suitability of groundwater with special emphasiznig the health risk posed by nitrate contamination using nitrate pollution index (NPI) and human health risk assessment (HHRA). human and ecological Risk Assessment: An International Journal, 27(5), 1324-1348.
  •  
  • 40. Panno, S.V., Kelly, W.R., Martinsek, A.T., and Hackley, K.C., 2006, Estimating background and threshold nitrate concentrations using probability graphs, Groundwater., 44(5), 697-709.
  •  
  • 41. Parrone, D., Frollini, E., Masciale, R., Melita, M., Passarella, G., Preziosi, E., and Ghergo, S., 2022, A double pre-selection method for natural background levels assessment in coastal groundwater bodies, Environ. Pollu., 313, 120076.
  •  
  • 42. Preziosi, E., Parrone, D., Del Bon, A., and Ghergo, S., 2014, Natural background level assessment in groundwaters: probability plot versus pre-selection method, J. Geochem. Explor., 143, 43-53.
  •  
  • 43. Richa, A., Touil, S., and Fizir, M., 2022, Recent advances in the source identification and remediation techniques of nitrate contaminated groundwater: A review, J. Environ. Manage., 316, 115265.
  •  
  • 44. Rahman, A., Tiwari, K.K., and Mondal, N.C., 2020, Assessment of hydrochemical backgrounds and threshold values of groundwater in a part of desert area, Rajasthan, India, Environ. Pollu., 266, 115150.
  •  
  • 45. Rodriguez, J., Perez, B., Nebot, C., Falque, E., and Simal-Gandara, J., 2020, Food production link to underground waters quality in A Limia river basin, Agr. Ecosys. Environ., 297, 106969.
  •  
  • 46. Runnells, D.D., Dupon, D.P., Jones, R.L., and Cline, D.J., 1998, Determination of natural background concentrations of dissolved components in water at mining, milling and smelting sites, MIN ENG (LITTLETON COLO)., 50(2), 69-71.
  •  
  • 47. Sellerino, M., Forte, G., and Ducci, D., 2019, Identification of the natual background levels in the Phlaegrean fields groundwater body (Southern Italy), J. Geochem. Explor., 200, 181-192.
  •  
  • 48. Sinclair, A.J., 1991, A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited, J. Geochem. Explor., 41(1-2), 1-22.
  •  
  • 49. Stetzenbach, K.J., Farnham, I.M., Hodge, V.F., and Johannesson, K.H., 1999, Using multivariate statistical analysis of groundwater major cation and trace element concentrations to evaluate groundwater flow in a regional aquifer, Hydrol. Process., 13(17), 2655-2673.
  •  
  • 50. Wendland, F., Berthold, G., Blum, A., Elsass, P., Fritsche, J.G., Kunkel, R., and Wolter, R., 2008, Derivation of natural background levels and threshold values for groundwater bodies in the Upper Rhine Valley (France, Switzerland and Germany), Desalination, 226(1-3), 160-168.
  •  
  • 51. Yea, Y.D., Seo, Y.G., Kim, R.H., Cho, D.J., Kim, K.S., and Cho, W.S., 2014, A study on estimating background concentration of groundwater for water quality assessment in non-water supply district, J. Kor. Soc. Water Wastewater., 28(3), 345-358.
  •  
  • 52. Younker, J. Zamlynny, L., Spearns, C., and Rand, J., 2021, Nitrate management in a rural drinking water supply, J. Water Process Eng., 43, 102301.
  •  
  • 53. Yun, S.T., Chae, K.T., Koh, Y.K., Kim, S.Y., Choi, B.Y., Lee, B.H., and Kim, S.Y., 1998, Hydrogeochemical and enviornmental isotope study of groundwaters in the Pungki Area, J. Soil Groundwater Environ., 5(4), 177-191.
  •  
  • 54. Zhang, X., Xu, Z., Sun, X., Dong, W., and Ballantine, D., 2013, Nitrate in shallow groundwater in typical argricultural and forest ecosystems in China, 2004-2010, J. Environ Sci., 25(5), 1007-1014.
  •  
  • 55. Zhang, X., Zhang, Y., Shi, P., Bi, Z., and Ren, L., 2021, The deep challenge of nitrate pollution in river water of China, Sci. Total Environ., 770, 144674.
  •  

This Article

  • 2024; 29(6): 116-130

    Published on Dec 31, 2024

  • 10.7857/JSGE.2024.29.6.116
  • Received on Oct 25, 2024
  • Revised on Nov 20, 2024
  • Accepted on Dec 11, 2024

Correspondence to

  • Kyung-Seok Ko
  • 1Groundwater Environment Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)
    2Geological Science, University of Science and Technology (UST)

  • E-mail: kyungsok@kigam.re.kr