• Immobilization of Radionuclides (Co, Sr) in Soil using Pillared Clays and Phosphate-based Compounds
  • Kyungchan Kang1 ㆍWon Sik Shin2*

  • 1 Offshore Plant Resources R&D Center, Korea Institute of Industrial Technology, 16, Mieumsandan 5-Ro 41Beon-Gil, Gangseo-Gu, Busan 46744, Republic of Korea
    2 School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

  • 개질 점토와 인산염계 화합물을 이용한 토양 내 방사성 핵종(Co, Sr)의 고정화
  • 강경찬1 ㆍ신원식2*

  • 1 한국생산기술연구원해양플랜트기자재R&D센터 2 경북대학교건설환경에너지공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Admassu, W. and Breese, T., 1999, Feasibility of using natural fishbone apa.tite as a substitute for hydroxyapatite in remediating aqueous heavy metals, J. Hazard. Mater., B69, 187-196. https://doi.org/10.1016/S0304-3894(99)00102-8
  •  
  • 2. Amerkhanova, S.K., Uali, A.S., and Shlyapov, R.M., 2018, Sorption of heavy metal ions from water by natural apatite ore, J. Water Chem. Technol., 40, 70-76. https://doi.org/10.3103/S1063455X18020030
  •  
  • 3. An, H.K., Park, B.Y., and Kim, D.S., 2001, Crab shell for the removal of heavy metals from aqueous solution, Water Res., 35(15), 3551-3556. https://doi.org/10.1016/S0043-1354(01)00099-9
  •  
  • 4. Bhattacharyya, K.G. and Gupta, S.S., 2008, Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium, Appl. Clay Sci., 41(1-2), 1-9. https://doi.org/10.1016/j.clay.2007.09.005
  •  
  • 5. Dyer, A. and Chow, J., The uptake of radioisotopes onto clays and other natural materials II. Cesium, strontium and ruthenium onto soils and peat, 1999, J. Radioanal. Nucl. Chem., 242(2), 321-328. https://doi.org/10.1007/BF02345559
  •  
  • 6. Dzombak, D.A. and Hudson, R.J.M., 1995, Aquatic Chemistry: Interfacial and Interspecies Processes, American Chemical Society, Washington DC, p.59.
  •  
  • 7. James, B.R. and Stahl, R.S., 1991, Zinc sorption by manganese-oxide-coated sand as a function of pH, Soil Sci. Soc. Am. J., 55, 1291-1294. https://doi.org/10.2136/sssaj1991.03615995005500050016x
  •  
  • 8. Kang, K.C., 2023, Assessment of radionuclides (Co, Sr) adsorption and desorption characteristics in soil using modified clay and fish bones, J. Soil Groundwater Environ., 28(6), 58-70.
  •  
  • 9. Kraepiel, A.M.L., Keller, K., and Morel, F.M.M., 1999, A model for metal adsorption on montmorillonite, J. Collloid Interface Sci., 210, 43-54. https://doi.org/10.1006/jcis.1998.5947
  •  
  • 10. Levi-Minzi, R. and Petruzzelli, G., 1984, The influence of phosphate fertilizers on Cd solubility in soil, Water, Air, Soil Pollut., 23, 423-429. https://doi.org/10.1007/BF00284737
  •  
  • 11. Lothenbach, B., Furer, G., and Schulin, R., 1997, Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds, Environ. Sci. Technol., 31, 1452-1462. https://doi.org/10.1021/es960697h
  •  
  • 12. Ma, Q.Y., Traina, S.J., and Logan, T.J., 1993, In situ lead immobilization by apatite, Environ. Sci. Technol., 27, 1803-1810. https://doi.org/10.1021/es00046a007
  •  
  • 13. Raicevic, S., Kaludjerovic-Radoicic, T., and Zouboulis, A.I., 2005, In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification, J. Hazard. Mater., B117, 41-53. https://doi.org/10.1016/j.jhazmat.2004.07.024
  •  
  • 14. Raicevic, S., Kaludjerovic-Radoicic, T., and Zouboulis, A.I., 2006, Theoretical stability assessment of uranyl phosphates and apatites: Selection of amendments for in situ remediation of uranium, Sci. Total Environ., 355, 1(3), 13-24. https://doi.org/10.1016/j.scitotenv.2005.03.006
  •  
  • 15. Tsai, S.C., Ouyang, S., and Hsu, C.N., 2001, Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite, Appl. Radiat. Isot., 54, 209-215. https://doi.org/10.1016/S0969-8043(00)00292-X
  •  
  • 16. Vengris, T., Binkien, R., and Sveikauskait, A., 2001, Nickel, copper and zinc removal from waste water by a modified clay sorbent, Appl. Clay Sci., 18, 3(4), 183-190. https://doi.org/10.1016/S0169-1317(00)00036-3
  •  
  • 17. Vijayaraghavan, K., Palanivelu, K., and Velan, M., 2005, Biosorption of copper(¥±) and cobalt(¥±) from aqueous solutions by crab shell particles, Bioresour. Technol., 97(12), 1411-1419. https://doi.org/10.1016/j.biortech.2005.07.001
  •  
  • 18. Xu, Y. and Schwartz, F.W., 1994, Lead immobilization by hydroxyapatite in aqueous solutions, J. Contam. Hydrol., 15(3), 187-206. https://doi.org/10.1016/0169-7722(94)90024-8
  •  

This Article

  • 2024; 29(6): 154-167

    Published on Dec 31, 2024

  • 10.7857/JSGE.2024.29.6.154
  • Received on Nov 29, 2024
  • Revised on Dec 15, 2024
  • Accepted on Dec 26, 2024

Correspondence to

  • Won Sik Shin
  • School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

  • E-mail: wshin@knu.ac.kr