• Real-time Measurement of Dissolved CO2 and Carbon-13 Isotope Using Membrane Contactor
  • Gitak Chae1*, Ji-Hyun Kim1, Soohyeon Moon2, and Chanhee Jang1,3

  • 1Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseoung-gu, Daejeon 34132, Korea
    2Korea Testing Laboratory, 87 Digital-ro 26-gil, Guro-gu, Seoul 08339, Korea
    3Chungnam National University, 99 Daehak-ro, Yuseoung-gu, Daejeon 34134, Korea

  • 멤브레인 콘택터를 이용한 탈이온수 내 용존 CO2와 탄소-13 동위원소의 실시간 측정
  • 채기탁1*ㆍ김지현1ㆍ문수현2ㆍ장찬희1,3

  • 1한국지질자원연구원
    2한국산업기술시험원
    3충남대학교

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Bein, E., Zucker, I., Drewes, J.E., and Hübner, U., 2021, Ozone membrane contactors for water and wastewater treatment: A critical review on materials selection, mass transfer and process design, Chem. Eng. J., 413, 127393. doi.org/10.1016/j.cej.2020. 127393
  •  
  • 2. Cheng, A., Sherwood Lollar, B., Gluyas, J.G., and Ballentine, C.J., 2023, Primary N2-He gas field formation in intracratonic sedimentary basins, Nature, 615(7950), 94-99.
  •  
  • 3. Choi, J., Yu, S., Park, S., Park, J., and Yun, S.-T., 2022, Status and implications of hydrogeochemical characterization of deep groundwater for deep geological disposal of high-level radioactive wastes in developed countries, Econ. Environ. Geol., 55(6), 737-760 (in Korean). doi.org/10.9719/EEG.2022.55.6.737
  •  
  • 4. Clark, I.D. and Fritz, P., 1997, Environmental Isotope in Hydrology, Lewis Pub., NY USA, 328pp. doi.org/10.1201/9781482242911
  •  
  • 5. Fang, Y., Hozalski, R.M., Clapp, L.W., Novak, P.J., and Semmens, M.J., 2002, Passive dissolution of hydrogen gas into groundwater using hollow-fiber membranes, Water. Res., 36(14), 3533-3542. doi.org/10.1016/S0043-1354(02)00046-5
  •  
  • 6. Gardner, P. and Solomon, D.K., 2009, An advanced passive diffusion sampler for the determination of dissolved gas concentrations, Water. Resour. Res., 45(6), W06423, doi.org/10.1029/2008wr007399. doi.org/10.1029/2008WR007399
  •  
  • 7. Hach, 2013, Technical note: What are the individual part of a pH electrode, https://at.hach.com/asset-get.download.jsa?id= 25593629884 [Accessed on 30 August 2024]
  •  
  • 8. Hales, B. and Takahashi, T., 2002, The pumping SeaSoar: A high-resolution seawater sampling platform, J. Atmos. Ocean. Technol., 19(7), 1096-1104. doi.org/10.1175/1520-0426(2002) 019<1096>2.0.CO;2
  •  
  • 9. Ham, B., Choi, B. Y., Chae, G.-T., Kirk, M.F., and Kwon, M.J., 2017, Geochemical influence on microbial communities at CO2-leakage analog sites, Front. Microbiol., 8, 2203, https://doi.org/10.3389/fmicb.2017.02203. doi.org/10.3389/fmicb.2017.02203
  •  
  • 10. Hartmann, J.F., Gentz, T., Schiller, A., Greule, M., Grossart, H.-P., Ionescu, D., Keppler, F., Martinez-Cruz, K., Sepulveda-Jauregui, A., and Isenbeck‐Schröter, M., 2018, A fast and sensitive method for the continuous in situ determination of dissolved methane and its ¥ä13C‐isotope ratio in surface waters, Limnol Oceanogr: Methods, 16(5), 273-285, doi.org/10.1002/lom3.10244
  •  
  • 11. Herbstritt, B., Gralher, B., and Weiler, M., 2019, Continuous, near-real-time observations of water stable isotope ratios during rainfall and throughfall events, Hydrol. Earth. Syst. Sci., 23(7), 3007-3019, doi.org/10.5194/hess-23-3007-2019
  •  
  • 12. Jiang, W., Hu, S.-M., Lu, Z.-T., Ritterbusch, F., and Yang, G.-m., 2020, Latest development of radiokrypton dating - A tool to find and study paleogroundwater, Quater. Inter., 547, 166-171, doi.org/10.1016/j.quaint.2019.04.025
  •  
  • 13. Kim, J.H., Ferguson, G., Person, M., Jiang, W., Lu, Z.T., Ritterbusch, F., Yang, G.M., Tyne, R., Bailey, L., Ballentine, C., Reiners, P., and McIntosh, J., 2022, Krypton-81 dating constrains timing of deep groundwater flow activation, Geophys Res. Lett., 49(11), e2021GL097618, doi.org/10.1029/2021gl097618
  •  
  • 14. Kim, Y.J., Kang, Y.Y., Hwang, D.G, Jeon, T.W., and Shin, S.K., 2017, Decomposition characteristics of pollutants by time dependent variation of livestock carcass leachate, Anal. Sci. Technol., 30(6) 338-347 (in Korean). doi.org/10.5806/AST.2017. 30.6.338
  •  
  • 15. Koh, H.C., Ha, S.Y., and Nam, S.Y., 2011, Preparation and properties of hollow fiber membrane for gas separation using CTA, Membr. J., 21(1), 98-105 (in Korean)
  •  
  • 16. Lee, H., 2024, Revisiting geochemical perspectives on degassing of the subcontinental lithospheric mantle, Geosci. J., 28(5) 781-788, doi.org/10.1007/s12303-024-0026-0
  •  
  • 17. Lee, S., Kang, N., Park, M., Hwang, J.Y., Yun, S.H., and Jeong, H.Y., 2018, A review on volcanic gas compositions related to volcanic activities and non-volcanological effects, Geosci. J., 22, 183-197.
  •  
  • 18. Liu, Y., Koops, G.H., and Strathmann, H., 2003, Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution, J. Membr. Sci., 223(1-2), 187-199, doi.org/10.1016/s0376-7388(03)00322-3
  •  
  • 19. Loose, B., Stute, M., Alexander, P., and Smethie, W.M., 2009, Design and deployment of a portable membrane equilibrator for sampling aqueous dissolved gases, Water. Resour. Res., 45(4), W00D34, doi.org/10.1029/2008wr006969
  •  
  • 20. Lu, Z.T., Schlosser, P., Smethie Jr, W.M., Sturchio, N.C., Fischer, T.P., Kennedy, B.M., Purtschert, R., Severinghaus, J.P., Solomon, D.K., Tanhua, T., and Yokochi, R., 2014, Tracer applications of noble gas radionuclides in the geosciences, Earth.-Sci. Rev., 138, 196-214. doi.org/10.1016/j.earscirev.2013.09.002
  •  
  • 21. Mansourizadeh, A., Rezaei, I., Lau, W.J., Seah, M.Q., and Ismail, A.F., 2022, A review on recent progress in environmental applications of membrane contactor technology, J. Environ. Chem. Eng., 10(3), 107631. doi.org/10.1016/j.jece.2022.107631
  •  
  • 22. Markovich, K.H., Condon, L.E., Carroll, K.C., Purtschert, R., and McIntosh, J.C., 2020, A mountain‐front recharge component characterization approach combining groundwater age distributions, noble gas thermometry, and fluid and energy transport modeling, Water. Resour. Res., 57(1), e2020WR027743. doi.org/10.1029/2020WR027743
  •  
  • 23. Matsumoto, T., Han, L.F., Jaklitsch, M., and Aggarwal, P.K., 2013, A portable membrane contactor sampler for analysis of noble gases in groundwater, Ground. Water., 51(3), 461-468, doi.org/10.1111/j.1745-6584.2012.00983.x
  •  
  • 24. Parkhurst, D.L. and Appelo, C.A.J., 1999, User¡¯s Guide to PHREEQC(version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, USGS, Water-Resource Investigation Report 99-4259. doi.org/10.3133/wri994259
  •  
  • 25. Purtschert, R., Love, A.J., Jiang, W., Lu, Z.T., Yang, G.M., Fulton, S., Wohling, D., Shand, P., Aeschbach, W., Broder, L., Muller, P., and Tosaki, Y., 2023, Residence times of groundwater along a flow path in the Great Artesian Basin determined by 81Kr, 36Cl and 4He: Implications for palaeo hydrogeology, Sci. Total. Environ., 859, 159886. doi.org/10.1016/j.scitotenv.2022.159886
  •  
  • 26. Ram, R., Burg, A., Zappala, J.C., Yokochi, R., Yechieli, Y., Purtschert, R., Jiang, W., Lu, Z.T., Mueller, P., Bernier, R., and Adar, E.M., 2020, Identifying recharge processes into a vast ¡°fossil¡± aquifer based on dynamic groundwater 81Kr age evolution, J. hydrol., 587, 124946.
  •  
  • 27. Sanford, W.E., Shropshire, R.G., and Solomon, D.K., 2010, Dissolved gas tracers in groundwater: Simplified injection, sampling, and analysis, Water. Resour. Res., 32(6), 1635-1642, doi.org/10.1029/96wr00599
  •  
  • 28. Sano, Y., Kagoshima, T., Takahata, N., Shirai, K., Park, J.O., Snyder, G.T., Shibata, T., Yamamoto, J., Nishio, Y., Chen, A.-T., Xu, S., Zhao, D., and Pinti, D.L., 2020, Groundwater anomaly related to CCS-CO2 injection and the 2018 Hokkaido Eastern Iburi earthquake in Japan, Front. Earth. Sci., 8, 611010.
  •  
  • 29. Troncoso, M., Garcia, G., Verdugo, J., and Farias, L., 2018, Toward high-resolution vertical measurements of dissolved greenhouse gases (nitrous oxide and methane) and nutrients in the Eastern South Pacific, Front. Mar. Sci., 5, 148, doi.org/10.3389/fmars.2018.00148
  •  
  • 30. Yokochi, R., 2016, Recent developments on field gas extraction and sample preparation methods for radiokrypton dating of groundwater, J. Hydrol., 540, 368-378. doi.org/10.1016/j.jhydrol.2016.06.020
  •  
  • 31. Zimmer, M., Erzinger, J., and Kujawa, C., 2011, The gas membrane sensor(GMS): A new method for gas measurements in deep boreholes applied at the CO2SINK site, Int. J. Greenh. Gas. Con., 5(4), 995-1001, doi.org/10.1016/j.ijggc.2010.11.007
  •  

This Article

  • 2025; 30(1): 1-11

    Published on Feb 28, 2025

  • 10.7857/JSGE.2025.30.1.001
  • Received on Nov 25, 2024
  • Revised on Dec 26, 2024
  • Accepted on Jan 29, 2025

Correspondence to

  • Gitak Chae
  • Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseoung-gu, Daejeon 34132, Korea

  • E-mail: gtchae@kigam.re.kr