• Reduction of Cd, Pb, and Zn Bioaccumulation in Lumbriculus variegatus Using Nitric Acid-Sodium Hydroxide Modified Activated Carbon
  • Hwanjong Seo and Jae-Woo Park*

  • Department of Civil and Environmental Engineering, HanyangUniversity, Seongdong-gu, Seoul 04763, South Korea

  • 질산-수산화나트륨 개질 활성탄을 이용한 Lumbriculus variegatus의 Cd, Pb, Zn 생물축적량 저감 실험연구
  • 서환종ㆍ박재우*

  • 한양대학교 건설환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abel, S., Akkanen, J., 2019. Novel, activated carbon-based material for in-situ remediation of contaminated sediments. Environ. Sci. Technol., 53(6), 3217-3224.
  •  
  • 2. Bohli, T., Ouederni, A., 2016. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase. Environ. Sci. Pollut. Res., 23(16), 15852-15861.
  •  
  • 3. Chen, R., Liu, J., Ding, G., Ren, F., Shi, R., Lv, J., et al., 2023. Simultaneous measurement of multiple labile heavy metals in soils by diffusive gradients in thin-film technique. J. Soils Sediments, 23(2), 958-972.
  •  
  • 4. Deng, Z., Sun, S., Li, H., Pan, D., Patil, R. R., Guo, Z., et al., 2021. Modification of coconut shell-based activated carbon and purification of wastewater. Adv. Compos. Hybrid Mater., 4, 65-73.
  •  
  • 5. Gupta, V. K., Saleh, T. A., 2013. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview. Environ. Sci. Pollut. Res., 20, 2828-2843.
  •  
  • 6. Hafizuddin, M. S., Lee, C. L., Chin, K. L., H¡¯ng, P. S., Khoo, P. S., Rashid, U., 2021. Fabrication of highly microporous structure activated carbon via surface modification with sodium hydroxide. Polymers, 13(22), 3954.
  •  
  • 7. Han, X., Wu, H., Li, Q., Cai, W., Hu, S., 2024. Assessment of heavy metal accumulation and potential risks in surface sediment of estuary area: A case study of Dagu river. Mar. Environ. Res., 196, 106416.
  •  
  • 8. Harper, M. P., Davison, W., Zhang, H., Tych, W., 1998. Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochim. Cosmochim. Acta, 62(16), 2757-2770.
  •  
  • 9. Higgins, C. P., Mcleod, P. B., MacManus-Spencer, L. A., Luthy, R. G., 2007. Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus. Environ. Sci. Technol., 41(13), 4600-4606.
  •  
  • 10. Jasku©©a, J., Sojka, M., 2022. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena, 211, 105959.
  •  
  • 11. Kang, S.H., Park, J.W., 2024. Applicability study on the stabilization of organic pollutant-contaminated sediments using acid/base-modified activated carbon. J. Korean Geo-Environ. Soc., 25(5), 5-13.
  •  
  • 12. Kim, D., Kim, C., Chun, B., Park, J.-W., 2012. Enhanced heavy metal sorption by surface-oxidized activated carbon does not affect the PAH sequestration in sediments. Water Air Soil Pollut., 223, 3195-3206.
  •  
  • 13. Lesaoana, M., Mlaba, R., Mtunzi, F., Klink, M., Ejidike, P., Pakade, V., 2019. Influence of inorganic acid modification on Cr(VI) adsorption performance and the physicochemical properties of activated carbon. SS. Afr. J. Chem. Eng., 28, 8-18.
  •  
  • 14. Li, Y., Ajmone-Marsan, F., Padoan, E., 2023. Combining DGT with bioaccessibility methods as tool to estimate potential bioavailability and release of PTEs in the urban soil environment. Sci. Total Environ., 857, 159597.
  •  
  • 15. Lin, H., Li, M., Zhu, Y., Lan, W., Feng, Q., Ding, S., et al., 2022. Development and validation of the DGT technique using the novel cryogel for measuring dissolved Hg (II) in the estuary. Mar. Environ. Res., 182, 105773.
  •  
  • 16. Lladó, J., Solé-Sardans, M., Lao-Luque, C., Fuente, E., Ruiz, B., 2016. Removal of pharmaceutical industry pollutants by coal-based activated carbons. Process Saf. Environ. Prot., 104, 294-303.
  •  
  • 17. Lobato-Peralta, D. R., Duque-Brito, E., Ayala-Cortés, A., Arias, D., Longoria, A., Cuentas-Gallegos, A. K., et al., 2021. Advances in activated carbon modification, surface heteroatom configuration, reactor strategies, and regeneration methods for enhanced wastewater treatment. J. Environ. Chem. Eng., 9(4), 105626.
  •  
  • 18. Mahmoud, M. E., Abdel-Fattah, T. M., Osman, M. M., Ahmed, S. B., 2012. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media. J. Environ. Sci. Health A, 47(1), 130-141.
  •  
  • 19. Marziali, L., Valsecchi, L., 2021. Mercury bioavailability in fluvial sediments estimated using Chironomus riparius and diffusive gradients in thin-films (DGT). Environments, 8(2), 7.
  •  
  • 20. McLeod, P. B., Van Den Heuvel‐Greve, M. J., Luoma, S. N., Luthy, R. G., 2007. Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon. Environ. Toxicol. Chem., 26(5), 980-987.
  •  
  • 21. Miranda, L. S., Ayoko, G. A., Egodawatta, P., Hu, W.-P., Ghidan, O., Goonetilleke, A., 2021. Physico-chemical properties of sediments governing the bioavailability of heavy metals in urban waterways. Sci. Total Environ., 763, 142984.
  •  
  • 22. Moalla, S., Awadallah, R., Rashed, M., Soltan, M., 1997. Distribution and chemical fractionation of some heavy metals in bottom sediments of Lake Nasser. Hydrobiologia, 364, 31-40.
  •  
  • 23. Nybom, I., Waissi-Leinonen, G., Mäenpää, K., Leppänen, M. T., Kukkonen, J. V., Werner, D., et al., 2015. Effects of activated carbon ageing in three PCB contaminated sediments: Sorption efficiency and secondary effects on Lumbriculus variegatus. Water Res., 85, 413-421.
  •  
  • 24. Özsin, G., K©¥l©¥ç, M., Apayd©¥n-Varol, E., Pütün, A. E., 2019. Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies. Appl. Water Sci., 9(56), 1-14.
  •  
  • 25. Park, M.-H., Kim, S.-J., Kim, J. H., & Park, J.-W. (2023). Effects of NaOH treatment on the adsorption ability of surface oxidized activated carbon for heavy metals. J. Geol. Soc. Korea, 28(6), 16-23.
  •  
  • 26. Pelcová, P., Kopp, R., Ridošková, A., Grmela, J., Štěrbová, D., 2022. Evaluation of mercury bioavailability and phytoaccumulation by means of a DGT technique and of submerged aquatic plants in an aquatic ecosystem situated in the vicinity of a cinnabar mine. Chemosphere, 288, 132545.
  •  
  • 27. Peng, W., Li, X., Xiao, S., Fan, W., 2018. Review of remediation technologies for sediments contaminated by heavy metals. J. Soils Sediments, 18, 1701-1719.
  •  
  • 28. Pet, I., Sanad, M. N., Farouz, M., ElFaham, M. M., El-Hussein, A., El-Sadek, M. A., et al., 2024. Recent developments in the implementation of activated carbon as heavy metal removal management. Water Conserv. Sci. Eng., 9(2), 62.
  •  
  • 29. Que, W., Yi, L., Wu, Y., Li, Q., 2024. Analysis of heavy metals in sediments with different particle sizes and influencing factors in a mining area in Hunan Province. Sci. Rep., 14(1), 20318.
  •  
  • 30. Que, W., Zhou, Y.-H., Liu, Y.-G., Wen, J., Tan, X.-F., Liu, S.-J., et al., 2019. Appraising the effect of in-situ remediation of heavy metal contaminated sediment by biochar and activated carbon on Cu immobilization and microbial community. Ecol. Eng., 127, 519-526.
  •  
  • 31. Rämö, R., Bonaglia, S., Nybom, I., Kreutzer, A., Witt, G., Sobek, A., et al., 2022. Sediment remediation using activated carbon: Effects of sorbent particle size and resuspension on sequestration of metals and organic contaminants. Environ. Toxicol. Chem., 41(4), 1096-1110.
  •  
  • 32. Senila, M., Resz, M.-A., Senila, L., Torok, I., 2024. Application of Diffusive Gradients in Thin-films (DGT) for assessing the heavy metals mobility in soil and prediction of their transfer to Russula virescens. Sci. Total Environ., 909, 168591.
  •  
  • 33. Waly, S. M., El-Wakil, A. M., Abou El-Maaty, W. M., Awad, F. S., 2021. Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon. J. Saudi Chem. Soc., 25(8), 101296.
  •  
  • 34. Wang, M., Zhu, Y., Cheng, L., Anderson, B., Zhao, X., Wang, D., et al., 2018. Review on utilization of biochar for metal-contaminated soil and sediment remediation. J. Environ. Sci., 63, 156-173.
  •  
  • 35. Wang, Y., Li, H., Lin, S., 2022. Advances in the study of heavy metal adsorption from water and soil by modified biochar. Water, 14(23), 3894.
  •  
  • 36. Williams, P. N., Zhang, H., Davison, W., Zhao, S., Lu, Y., Dong, F., et al., 2012. Evaluation of in situ DGT measurements for predicting the concentration of Cd in Chinese field-cultivated rice: Impact of soil Cd: Zn ratios. Environ. Sci. Technol., 46(15), 8009-8016.
  •  
  • 37. Xu, D., Gao, B., Peng, W., Gao, L., Wan, X., Li, Y., 2019. Application of DGT/DIFS and geochemical baseline to assess Cd release risk in reservoir riparian soils, China. Sci. Total Environ., 646, 1546-1553.
  •  
  • 38. Xue, Y., Cheng, W., Cao, M., Gao, J., Chen, J., Gui, Y., et al., 2022. Development of nitric acid-modified activated carbon electrode for removal of Co©÷⁺/Mn©÷⁺/Ni©÷⁺ by electrosorption. Environ. Sci. Pollut. Res., 29(51), 77536-77552.
  •  
  • 39. Yin, H., Cai, Y., Duan, H., Gao, J., Fan, C. 2014. Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes. J. Hazard. Mater., 264, 184-194.
  •  
  • 40. Yin, Z., Song, L., Lin, Z., Hui, K., Wang, Q., Song, H., et al., 2020. Granular activated carbon-supported titanium dioxide nanoparticles as an amendment for amending copper-contaminated sediments: Effect on the pH in sediments and enzymatic activities. Ecotoxicol. Environ. Saf., 206, 111325.
  •  
  • 41. Zhang, C., Ding, S., Xu, D., Tang, Y., Wong, M. H. (2014). Bioavailability assessment of phosphorus and metals in soils and sediments: a review of diffusive gradients in thin films (DGT). Environ. Monit. Assess., 186, 7367-7378.
  •  
  • 42. Zhang, C., Yu, Z.-g., Zeng, G.-m., Jiang, M., Yang, Z.-z., Cui, F., et al., 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int., 73, 270-281.
  •  
  • 43. Zhang, Y., Labianca, C., Chen, L., De Gisi, S., Notarnicola, M., Guo, B., et al., 2021. Sustainable ex-situ remediation of contaminated sediment: A review. Environ. Pollut., 287, 117333.
  •  
  • 44. Zhang, Y., Yang, J., Simpson, S. L., Wang, Y., Zhu, L. (2019). Application of diffusive gradients in thin films (DGT) and simultaneously extracted metals (SEM) for evaluating bioavailability of metal contaminants in the sediments of Taihu Lake, China. Ecotoxicol. Environ. Saf., 184, 109627.
  •  
  • 45. Zhu, Q., Ji, J., Tang, X., Wang, C., Sun, H., 2023. Bioavailability assessment of heavy metals and organic pollutants in water and soil using DGT: A review. Appl. Sci., 13(17), 9760.
  •  
  • 46. Zimmerman, J. R., Werner, D., Ghosh, U., Millward, R. N., Bridges, T. S., Luthy, R. G., 2005. Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments. Environ. Toxicol. Chem., 24(7), 1594-1601.
  •  
  • 47. Zuo, Q., Zheng, H., Zhang, P., Zhang, Y., Zhang, J., Zhang, B., 2023. Facile green preparation of single-and two-component modified activated carbon fibers for efficient trace heavy metals removal from drinking water. Chemosphere, 316, 137799.
  •  

This Article

  • 2025; 30(2): 13-24

    Published on Apr 30, 2025

  • 10.7857/JSGE.2025.30.2.013
  • Received on Mar 17, 2025
  • Revised on Mar 22, 2025
  • Accepted on Apr 15, 2025

Correspondence to

  • Jae-Woo Park
  • Department of Civil and Environmental Engineering, HanyangUniversity, Seongdong-gu, Seoul 04763, South Korea

  • E-mail: jaewoopark@hanyang.ac.kr