• A Study on Domestic and International Management Trends and Treatment Methods of PFAS in Groundwater
  • Seunghwan Park, JongHyun Yoon, JongBeom Kwon, Hyeonhee Choi, Seong-Yu Noh, MoonSu Kim, and Sunhwa Park*

  • Soil and Groundwater Research Division Environmental Resources Research Department Environmental Research Complex, Hwangyong-ro 42, Seo-gu, Incheon 22689, Republic of Korea

  • 지하수 중 과불화화합물의 국내·외 관리동향 및 저감방법 고찰
  • 박승환ㆍ윤종현ㆍ권종범ㆍ최현희ㆍ노성유ㆍ김문수ㆍ박선화*

  • 국립환경과학원 환경자원연구부 토양지하수연구과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Agency for Toxic Substances and Disease Registry (ATSDR), 2019, Toxicological profile for perfluoroalkyls, ATSDR, https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf [accessed 25.04.23]
  •  
  • 2. Appleman, T. D., Dickenson, E. R. V., Bellona, C., and Higgins, C. P., 2013, Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids, J. Hazard. Mater., 260, 740-746.
  •  
  • 3. Backe, W. J., Day, T. C., and Field, J. A., 2013, Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases, Environ. Sci. Technol., 47(10), 5226-5234.
  •  
  • 4. Brusseau, M. L., Anderson, R. H., and Guo, B., 2020, PFAS concentrations in soils: Background levels versus contaminated sites, Sci. Total Environ., 740, 140017.
  •  
  • 5. Burns, D. J., Hinrichsen, H. M., Stevenson, P., and Murphy, P. J. C., 2022, Commercial-scale remediation of per- and polyfluoroalkyl substances from a landfill leachate catchment using Surface-Active Foam Fractionation (SAFF¢ç), Remediation, 32(3), 139-150.
  •  
  • 6. Burns, D. J., Stevenson, P., and Murphy, P. J. C., 2021, PFAS removal from groundwaters using Surface-Active Foam Fractionation, Remediation, 31(4), 1-15.
  •  
  • 7. Cao, H., Li, X., and Wang, Y., 2019, Occurrence, sources and health risk of polyfluoroalkyl substances (PFASs) in soil, water and sediment from a drinking water source area, Environ. Pollut., 252, 1534-1542.
  •  
  • 8. Chen, M., Li, X., Wang, Y., and Zhang, Z., 2016, Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China, Environ. Sci. Technol., 50(12), 3456-3463.
  •  
  • 9. Cho, H. S., Kang, J. H., Lee, D. I., and Ko, G. J., 2005, Contamination of PFOS and PFCs in water quality and surface sediments of Gwangyang Bay watershed, Proc. Korean Mar. Environ. Energy Soc.
  •  
  • 10. Dixit, F., Barbeau, B., Mostafavi, S. G., and Mohseni, M., 2021, Review of Removal Techniques for the Treatment of PFAS-Contaminated Water, Water, 13(3), 366.
  •  
  • 11. Dudarko, M. J., Hladik, M. L., Roberts, A. L., and Strynar, M. J., 2024, Removal of Poly- and Perfluoroalkyl Substances from Natural Waters, Environ. Sci. Technol. Water, 4(5), 1234-1245.
  •  
  • 12. Environmental Science and Research (ESR), 2022, National Survey of Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater 2022, ESR.
  •  
  • 13. Eschauzier, M. S., Vergouwen, E., and de Voogt, P., 2018, Applicability of the direct injection liquid chromatographic tandem mass spectrometric analytical approach to the sub-ng L-1 determination of perfluoroalkyl substances (PFAS), Environ. Sci. Technol., 52(1), 123-131.
  •  
  • 14. European Parliament and Council, 2020, Directive (EU) 2020/2184 of 16 December 2020 on the quality of water intended for human consumption, Off. J. Eur. Union L., 435, 1-62.
  •  
  • 15. European Union Law (EU), EUR-Lex., https://eur-lex.europa.eu [accessed 25.04.23]
  •  
  • 16. Flores, C., Ventura, J., Martin-Alonso, J., and Caixach, J., 2013, Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant, Sci. Total Environ., 461-462, 618-626.
  •  
  • 17. Food Standards Australia New Zealand (FSANZ), https://www.foodstandards.gov.au [accessed 25.04.23]
  •  
  • 18. Forrester, E., and Matthis, J., 2018, Treatment solutions for PFAS removal: Evaluating total cost. Forrester & Matthis.
  •  
  • 19. Harding-Marjanovic, K. C., Houtz, E. F., Sedlak, D. L., and Alvarez-Cohen, L., 2015, Foaming and removal of perfluoroalkyl substances from groundwater, Environ. Sci. Technol., 49(10), 6267-6275.
  •  
  • 20. Hepburn, E., Madden, S., Szabo, C., Coggan, S., Clarke, M., Currell, C., and Allinson, A., 2019, Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban redevelopment precinct, Sci. Total Environ., 687, 456-468.
  •  
  • 21. International Agency for Research on Cancer (IARC), About IARC Mission. World Health Organization, https://www.iarc. who.int/about-iarc-mission [accessed 25.04.23]
  •  
  • 22. Interstate Technology and Regulatory Council (ITRC), 2020, Per- and Polyfluoroalkyl Substances (PFAS) Technical/Regulatory Guidance, ITRC, https://pfas-1.itrcweb.org/wp-content/uploads/2020/10/itrc_pfas_techreg_sept_2020_508-1.pdf [accessed 25. 04.23]
  •  
  • 23. Interstate Technology and Regulatory Council (ITRC), https://pfas-1.itrcweb.org [accessed 25.04.23]
  •  
  • 24. Izadpanah, A., and Javidnia, A., 2012, The ability of a nanofiltration membrane to remove hardness and ions from diluted seawater, Water, 4(2), 283-294.
  •  
  • 25. Johnson, G. R., Brusseau, M. L., Carroll, K. C., Tick, G. R., and Duncan, C. M., 2022, Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater, Sci. Total Environ., 851, 156602.
  •  
  • 26. Kothawala, D. N., Köhler, S. J., Östlund, A., Wiberg, K., and Ahrens, L., 2017, Influence of dissolved organic matter concentration and composition on the removal efficiency of perfluoroalkyl substances (PFASs) during drinking water treatment, Water Res., 121, 320-328.
  •  
  • 27. Kothawala, D. N., Sander, M., Hofstetter, T. B., Bolotin, J., and Gunten, U. V., 2017, Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption and ion exchange, Water Res., 123, 320-329.
  •  
  • 28. Kucharzyk, K. H., Darlington, R., Benotti, M., Deeb, R., and Hawley, E., 2017, Novel treatment technologies for PFAS compounds: A critical review, J. Environ. Manage., 204, 757-764.
  •  
  • 29. Lau, W. J., Ismail, A. F., Misdan, N., and Kassim, M. A., 2012, A recent progress in thin film composite membrane: A review, Desalination, 287, 190-199.
  •  
  • 30. Lee, J. Y., Cha, J., and Lee, J., 2025. A review on the inflow paths, occurrence, fate, remediation technologies, and related regulations of per- and polyfluoroalkyl substances (PFAS) in groundwater, J. Geol. Soc. Korea, 61(1).
  •  
  • 31. Lemlich, R., and Lavi, E., 1961. Foam fractionation with reflux, Science, 134(3473), 191-191.
  •  
  • 32. Lemlich, R., 1972, Adsorptive Bubble Separation Techniques, Academic Press.
  •  
  • 33. Liu, X., and Sun, Y., 2021, Ion exchange removal and resin regeneration to treat PFAS in drinking water, J. Environ. Chem. Eng., 9(4), 105432.
  •  
  • 34. McCleaf, P., Englund, S., Östlund, A., Lindegren, K., Wiberg, K., and Ahrens, L., 2017, Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests, Water Res., 120, 77-87.
  •  
  • 35. McCleaf, P., Kjellgren, Y., and Ahrens, L., 2021, Foam fractionation removal of multiple per- and polyfluoroalkyl substances from landfill leachate, AWWA Water Sci., 3(5), e1238. https://doi.org/10.1002/aws2.1238
  •  
  • 36. McGregor, R., 2020, Distribution of colloidal and powdered activated carbon for the in situ treatment of groundwater, J. Water Resour. Prot., 12(12), 1001-1018.
  •  
  • 37. McGuire, M. E., Schaefer, J., Richards, C. P., Backe, J. S., Field, J. A., and Houtz, L. S., 2014, Evidence of remediation-induced alteration of subsurface poly- and perfluoroalkyl substance distribution at a former firefighter training area, Environ. Sci. Technol., 48(12), 6644-6652.
  •  
  • 38. McNamara, J. D., Franco, R., Mimna, R., and Zappa, L., 2018, Comparison of activated carbons for removal of perfluorinated compounds from drinking water, J. Am. Water Works Assoc., 110(1), E2-E14.
  •  
  • 39. Ministry of Environment, 2018, August. 전국 정수장ㆍ산업단지 과불화화합물 검출 실태조사 발표 [Results of Investigation on Perfluorinated Compounds Detection in National Water Purification Plants and Industrial Complexes], Ministry of Environment, Press Release.
  •  
  • 40. Ministry of Environment, 2018, 2017년 잔류성유기오염물질(POPs) 측정망 운영 결과보고서 [2017 Result Report of Persistent Organic Pollutants (POPs) Monitoring Network Operation], Ministry of Environment.
  •  
  • 41. Minnesota Pollution Control Agency, 2013, Perfluorinated chemicals in Minnesota¡¯s ambient groundwater, Minnesota Pollution Control Agency.
  •  
  • 42. Murakami, M., Kuroda, K., Sato, N., Fukushi, T., Takizawa, S., and Takada, H., 2009, Groundwater pollution by perfluorinated surfactants in Tokyo, Environ. Sci. Technol., 43(10), 3480-3486.
  •  
  • 43. National Center for Biotechnology Information (NCBI), PubChem Substance and Compound databases, https://pubchem. ncbi.nlm.nih.gov [accessed 25.04.23]
  •  
  • 44. National Institute of Environmental Research, 2017, 담수어류 중 잔류성 유기오염물질의 축적성 연구(VI) [Accumulation Study of Persistent Organic Pollutants in Freshwater Fish (VI)], National Institute of Environmental Research.
  •  
  • 45. New Jersey EPA, 2014, Occurrence of perfluorinated chemicals in untreated New Jersey drinking water sources, New Jersey EPA.
  •  
  • 46. Newman, P., 2022, Foam Fractionation for PFAS Removal: Leveraging the Physiochemistry of PFAS Against Itself, RemTech 2022, Edmonton, Alberta, Canada.
  •  
  • 47. Robey, N. M., da Silva, B. F., Annable, M. D., Townsend, T. G., and Bowden, J. A., 2020, Concentrating Per- and Polyfluoroalkyl Substances (PFAS) in Municipal Solid Waste Landfill Leachate Using Foam Separation, Environ. Sci. Technol., 54(19), 12550-12559. https://doi.org/10.1021/acs.est.0c01266
  •  
  • 48. Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., Hurst, J., Dasgupta, S. S., and Burdick, J., 2018, A review of emerging technologies for remediation of PFASs, Remediation, 28(2), 101-126.
  •  
  • 49. Rostkowski, P., Yamashita, N., So, I. M. K., Taniyasu, S., Lam, P. K. S., Falandysz, J., Lee, K. T., Kim, S. K., Khim, J. S., Im, S. H., Newsted, J. L., Jones, P. D., Kannan, K., and Giesy, J. P., 2006, Perfluorinated compounds in streams of the Shihwa industrial zone and Lake Shihwa, South Korea, Environ. Toxicol. Chem., 25(9), 2374-2380.
  •  
  • 50. Science History Institute, 2017, Historical biography: Roy J. Plunkett. Science History Institute, https://www.sciencehistory.org/historical-profile/roy-j-plunkett [accessed 25.04.23]
  •  
  • 51. Scotland¡¯s Centre of Expertise for Waters (CREW), 2017, Scoping study for addressing risk to private water supplies from the presence of per- and polyfluoroalkyl substances (PFAS).
  •  
  • 52. Seo, S., Han, J., Na, S., Lee, J., and Kim, M., 2024, Influence of molecular structure on the adsorption of per- and polyfluoroalkyl substances (PFASs) to activated carbon in the aqueous phase, J. Environ. Anal. Health Toxicol., 27(4), 206. https://doi.org/10.36278/jeaht.27.4.206
  •  
  • 53. Sharma, B. M., Bharat, G. K., Tayal, S., Larssen, T., Bečanová, J., Karásková, P., Whitehead, P. G., Futter, M. N., Butterfield, D., and Nizzetto, L., 2016, Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure, Environ. Pollut., 208, 704-714.
  •  
  • 54. Shin, M. Y., Im, J. K., Kho, Y. L., Choi, K. S., and Zoh, K. D., 2009, Monitoring study of PFOA and PFOS in effluents from sewage treatment plants and the Han River in Seoul, J. Environ. Health Sci., 35(4), 334-342.
  •  
  • 55. Shoemaker, J. A., and Tettenhorst, D. R., 2018, Method 537.1: Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), U.S. Environmental Protection Agency.
  •  
  • 56. Sinclair, E., Mayack, D. T., Roblee, K., Yamashita, N., and Kannan, K., 2006, Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State, Arch. Environ. Contam. Toxicol., 50(3), 398-410.
  •  
  • 57. Skutlarek, D., Exner, M., and Färber, H., 2006, Perfluorinated surfactants in surface and drinking water, Environ. Sci. Pollut. Res., 13(5), 299-307.
  •  
  • 58. Smaili, H., and Ng, C., 2023, Adsorption as a remediation technology for short-chain per- and polyfluoroalkyl substances (PFAS) from water – a critical review, Environ. Sci. Water Res. Technol., 9, 344-362.
  •  
  • 59. Smith, S. J., Lewis, J., Wiberg, K., Wall, E., and Ahrens, L., 2023, Foam fractionation for removal of per- and polyfluoroalkyl substances: Towards closing the mass balance, Sci. Total Environ., 871, 162050. https://doi.org/10.1016/j.scitotenv.2023.162050
  •  
  • 60. Smith, S. J., Wahman, D. G., Kleiner, E. J., Abulikemu, G., Stebel, E. K., Gray, B. N., Datsov, B., Crone, B. C., Taylor, R. D., Womack, E., Gastaldo, C. X., Sorial, G., Lytle, D., Pressman, J. G., and Haupert, L. M., 2023, Anion exchange resin and inorganic anion parameter determination for model validation and evaluation of unintended consequences during PFAS treatment, ACS EST Water, 3(2), 576-587.
  •  
  • 61. Smith, S. J., Wiberg, K., McCleaf, P., and Ahrens, L., 2022, Pilot-Scale Continuous Foam Fractionation for the Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Landfill Leachate, ACS EST Water, 2(5), 841-851. https://doi.org/10.1021/acsestwater.2c00032
  •  
  • 62. So, M. K., Taniyasu, S., Yamashita, N., Giesy, J. P., Zheng, J., Fang, Z., Im, S. H., and Lam, P. K. S., 2004, Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea, Environ. Sci. Technol., 38(15), 4056-4063.
  •  
  • 63. Son, J. H., Chung, S. Y., and Kwon, B. G., 2017, Monitoring of perfluorinated compounds in seawater from the East and West Coasts of Korea, J. Korean Geo-Environ. Soc., 17(1), 5-12.
  •  
  • 64. Sun, R., et al., 2024, New insights into thermal degradation products of long-chain per- and polyfluoroalkyl substances (PFAS) and their mineralization enhancement using additives, Environ. Sci. Technol., 58(50), 22417-22430.
  •  
  • 65. Takagi, S., Adachi, F., Miyano, K., Koizumi, Y., Tanaka, H., Mimura, M., Watanabe, I., Tanabe, S., and Kannan, K., 2008, Perfluorooctanesulfonate and perfluorooctanonate in raw and treated tap water from Osaka, Japan, Chemosphere, 72(10), 1409-1412.
  •  
  • 66. Tang, C. Y., Fu, Q. S., Criddle, C. S., and Leckie, J. O., 2007, Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater, Environ. Sci. Technol., 41(6), 2008-2014.
  •  
  • 67. Tang, C. Y., Shiang Fu, Q., Gao, D., Criddle, C. S., and Leckie, J. O., 2007, Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces, Environ. Sci. Technol., 41(15), 5666-5672.
  •  
  • 68. United States Environmental Protection Agency (EPA), EPA, https://www.epa.gov [accessed 25.04.23]
  •  
  • 69. Vo, P. N. V., Nguyen, T. M., Bui, H. T., Chen, J., Huang, W., and Fang, C., 2020, Poly- and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation, Sci. Total Environ., 729, 138995.
  •  
  • 70. We, A. C. E., Zamyadi, A., Stickland, A. D., Clarke, B. O., and Freguia, S., 2024, A review of foam fractionation for the removal of per- and polyfluoroalkyl substances (PFAS) from aqueous matrices, J. Hazard. Mater., 465, 133182.
  •  
  • 71. Westreich, P., Mimna, R., Brewer, J., and Forrester, F., 2018, The removal of short-chain and long-chain perfluoroalkyl acids and sulfonates via granular activated carbons: A comparative column study, Remediation, 28(4), 43-55.
  •  
  • 72. Woodard, S., Berry, J., and Newman, B., 2017, Ion exchange resin for PFAS removal and pilot test comparison to GAC, Remediation, 27(3), 19-27.
  •  
  • 73. Xiao, F., Zhang, C., Webster, M. F., Conder, R. C., Bowden, J. L., and Higgins, C. P., 2017, Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to AFFF-impacted groundwater using colloidal activated carbon, Environ. Sci. Technol., 51(11), 6342-6350.
  •  
  • 74. Xiao, F., Simcik, M. F., Halbach, T. R., and Gulliver, J. S., 2017, Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Using Carbonaceous Sorbents, Environ. Sci. Technol., 51(11), 6342-6351.
  •  
  • 75. Yeo, M. K., Hwang, E. H., and Jeong, G. H., 2012, Distribution characteristics of perfluorinated compounds in major river water and sediment in South Korea, Anal. Sci. Technol., 25(5), 313-323.
  •  
  • 76. Yu, Q., Zhang, R., Deng, S., Huang, J., and Yu, G., 2009, Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study, Water Res., 43, 1150–1158.
  •  
  • 77. Zareitalabad, P., Siemens, J., Hamer, M., and Amelung, W., 2013, Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients, Chemosphere, 91, 725-732.
  •  
  • 78. Zeng, C., Atkinson, A., Sharma, N., Ashani, H., Hjelmstad, A., Venkatesh, K., and Westerhoff, P., 2020, Removing per- and polyfluoroalkyl substances from groundwaters using activated carbon and ion exchange resin packed columns, AWWA Water Sci., 2(1), e1172.
  •  

This Article

  • 2025; 30(3): 1-13

    Published on Jun 30, 2025

  • 10.7857/JSGE.2025.30.3.001
  • Received on Jun 5, 2025
  • Revised on Jun 9, 2025
  • Accepted on Jun 18, 2025

Correspondence to

  • Sunhwa Park
  • Soil and Groundwater Research Division Environmental Resources Research Department Environmental Research Complex, Hwangyong-ro 42, Seo-gu, Incheon 22689, Republic of Korea

  • E-mail: parksu@korea.kr