• Hydrological Assessment of Baseflow and Influencing Watershed Characteristics in the Yeongsan and Seomjin Watersheds
  • Jin Chul Joo1 , Dong Hwi Lee2 , Kyung In Chae1 , Su Ryeon Kim3 , Kangwei Shi3 , Kwang Wook Jung1 , and In Kyun Jung1*

  • 1 Department of Civil and Environmental Engineering, Hanbat National University
    2 Water & Environment Co., Ltd.
    3 Department of Environmental Engineering, Hanbat National University

  • 영산강ㆍ섬진강 유역 기저유출 평가 및 유역 특성과 기저유출의 상관성 검토
  • 주진철1 ㆍ이동휘2 ㆍ채경인1 ㆍ김수련3 ㆍShi Kangwei3 ㆍ정광욱2 ㆍ정인균2*

  • 1 국립한밭대학교 건설환경공학과
    2 (주)물과환경
    3 국립한밭대학교 환경공학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ahiablame, L., Chaubey, I., Engel, B., Cherkauer, K. and Merwade, V., 2013, Estimation of annual baseflow at ungauged sites in Indiana, USA, J. Hydrol., 476, 13-27.
  •  
  • 2. Aksoy, H., Unal, N. E., and Bavli, H., 2008. Smoothed minima baseflow separation method: Procedure and application, J. Hydrol. Engrg., 13(9), 761-768.
  •  
  • 3. Cey, E.E., Rudolph, D.L., Parkin, G.W. and Aravena, R., 1998, Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada, J. Hydrol., 210(1-4), 21-37.
  •  
  • 4. Chang, F.J., Huang, C.W., Cheng, S.T. and Chang, L.C., 2017, Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management, Sci. Total Environ., 598, 828-838.
  •  
  • 5. Chapman, T. G., 1991, Comment on ¡°Evaluation of automated techniques for base flow and recession analyses¡± by RJ Nathan and TA McMahon. Water Resour. Res., 27(7), 1783-1784.
  •  
  • 6. Chapman, T., 1999, A comparison of algorithms for stream flow recession and baseflow separation, Hydrol. Process., 13(5), 701-714.
  •  
  • 7. Chapman, T.G., and Maxwell, A.I., 1996, Baseflow separation-comparison of numerical methods with tracer experiments, In Institute Engineers Australia National Conference, Institute of Engineers, Canberra, Australia, 5, 539-545.
  •  
  • 8. Choi, Y.H., Park, Y.S., Ryu, J.C., Lee, D.J., Kim, Y.S., Choi, J.D., and Lim, K.J., 2014, Analysis of baseflow contribution to streamflow at several flow stations, J. Korean Soc. Water Environ., 30(4), 441-451.
  •  
  • 9. Eckhardt, K., 2005, How to construct recursive digital filters for baseflow separation, Hydrol. Process., 19(2), 507-515.
  •  
  • 10. Eckhardt, K., 2012, Analytical sensitivity analysis of a two parameter recursive digital baseflow separation filter, Hydrol. Earth Syst. Sci., 16(2), 451-455.
  •  
  • 11. Gou, S. and Miller, G., 2014, A groundwater–soil–plant–atmosphere continuum approach for modelling water stress, uptake, and hydraulic redistribution in phreatophytic vegetation, Ecohydrology, 7(3), 1029-1041.
  •  
  • 12. Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F. 2009, Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol., 377(1–2), 80–91.
  •  
  • 13. Gustard, A., Bullock, A., and Dixon, J. M., 1992, Low flow estimation in the United Kingdom, Inst. Hydrol, 108, Wallingford, UK.
  •  
  • 14. Kang, H.S., Hyun, Y.J., and Jun, S.M., 2019, Regional estimation of baseflow index in Korea and analysis of baseflow effects according to urbanization, J. Korea Water Resour. Assoc., 52(2), 97-105.
  •  
  • 15. Kang, T., and Lee, N.j., 2021, Case study on application of graphical method for baseflow separation, J.Korea Water Resour. Assoc., 54(4), 217-227.
  •  
  • 16. Kang, T., Lee, S., Lee, N., and Jin, Y., 2022. Baseflow separation using the digital filter method: review and sensitivity analysis. Water, 14(3), 485.
  •  
  • 17. Kim, J. H., Lee, S. Y., and Lee, S. H., 2020, Baseflow characteristics in agricultural basins under groundwater use pressure. Water, 12(2), 311.
  •  
  • 18. Knoben, W.J., Freer, J.E. and Woods, R.A., 2019, Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23(10), 4323-4331.
  •  
  • 19. Ladson, A.R., Brown, R., Neal, B. and Nathan, R., 2013, A standard approach to baseflow separation using the Lyne and Hollick filter, Australasian J. Water Res., 17(1), 25-34.
  •  
  • 20. Lee, S.C., Kim H.Y., Kim H.J., Han J.H., Kim, S.J., Kim, J.G., and Lim, K.J., 2017, Analysis of Baseflow Contribution based on Time-scales Using Various Baseflow Separation Methods, J. Korean Soc. Agric. Eng., 59(2), 1-11.
  •  
  • 21. Lott, D.A. and Stewart, M.T., 2013, A power function method for estimating base flow, Groundwater, 51(3), 442-451.
  •  
  • 22. Lott, D.A. and Stewart, M.T., 2016, Base flow separation: A comparison of analytical and mass balance methods, J. Hydrol., 535, 525-533.
  •  
  • 23. Lyne, V. and Hollick, M., 1979, Stochastic time-variable rainfall-runoff modeling, In Institute of Engineers Australia National Conference,79, 10-89.
  •  
  • 24. Lyu, Y., Luo, W., Wang, Y., Zeng, G., Wang, Y., Cheng, A., Zhang, L., Chen, J., Cai, X., Zhang, R. and Wang, S., 2020, Impacts of cave ventilation on drip water ¥ä13CDIC and its paleoclimate implication, Quat. Int., 547, 7-21.
  •  
  • 25. Matsubayashi, U., Velasquez, G.T. and Takagi, F., 1993, Hydrograph separation and flow analysis by specific electrical conductance of water, J. Hydrol., 152(1-4), 179-199.
  •  
  • 26. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L., 2007, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE., 50(3), 885-900.
  •  
  • 27. Nathan, R.J. and McMahon, T.A., 1990, Evaluation of automated techniques for base flow and recession analyses, Water Resour. Res., 26(7), 1465-1473.
  •  
  • 28. Park, S., Nielsen, A., Bailey, R.T., Trolle, D. and Bieger, K., 2019, A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models, Environ. Modell. Software., 111, 493-497.
  •  
  • 29. Piggott, A.R., Moin, S. and Southam, C., 2005, A revised approach to the UKIH method for the calculation of baseflow/Une approche améliorée de la méthode de l'UKIH pour le calcul de l'écoulement de base, Hydrol. Sci. J., 50(5).
  •  
  • 30. Pilgrim, D.H., Huff, D.D. and Steele, T.D., 1979, Use of specific conductance and contact time relations for separating flow components in storm runoff, Water Resour. Res., 15(2), 329-339.
  •  
  • 31. Pinder, G.F. and Jones, J.F., 1969, Determination of the ground‐water component of peak discharge from the chemistry of total runoff, Water Resour. Res., 5(2), 438-445.
  •  
  • 32. Rutledge, A.T., 1998, Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records: Update (No. 98), US Department of the Interior, US Geological Survey.
  •  
  • 33. Saraiva Okello, A.M.L., Uhlenbrook, S., Jewitt, G.P., Masih, I., Riddell, E.S. and Van der Zaag, P., 2018, Hydrograph separation using tracers and digital filters to quantify runoff components in a semi‐arid mesoscale catchment, Hydrol. Process., 32(10), 1334-1350.
  •  
  • 34. Sloto, R.A. and Crouse, M.Y., 1996, HYSEP: A computer program for streamflow hydrograph separation and analysis, U.S. Geol. Surv., 96-4040.
  •  
  • 35. Stewart, M., Cimino, J. and Ross, M., 2007, Calibration of base flow separation methods with streamflow conductivity, Groundwater, 45(1), 17-27.
  •  
  • 36. Tularam, G.A., and Ilahee, M., 2008, Exponential smoothing method of baseflow separation and its impact on continuous loss estimates, Am. J. Environ. Sci., 4(2), 136-144.
  •  
  • 37. Xie, J., Liu, X., Wang, K., Yang, T., Liang, K. and Liu, C., 2020, Evaluation of typical methods for baseflow separation in the contiguous United States, J. Hydrol., 583, 124628.
  •  
  • 38. Yang, H., 2006, Runoff characteristics of non-point source pollutants in storm event -Case study on the upstream and downstream of Kokseong River, Korea-, J. Korean Geogr. Soc., 41(4), 418-434.
  •  
  • 39. Yeongsan River Flood Control Office, www.yeongsanriver.go.kr/sumun/wlList.do?S=S01 [accessed 25.05.29]
  •  
  • 40. Yu, Z. and Schwartz, F.W., 1999, Automated calibration applied to watershed‐scale flow simulations, Hydrol. Process., 13(2), 191-209.
  •  
  • 41. Zhang, J., Zhang, Y., Song, J. and Cheng, L., 2017, Evaluating relative merits of four baseflow separation methods in Eastern Australia, J. Hydrol., 549, 252-263.
  •  
  • 42. Zhang, Y., Ahiablame, L., Engel, B. and Liu, J., 2013, Regression modeling of baseflow and baseflow index for Michigan, USA, Water, 5(4), 1797-1815.
  •  

This Article

  • 2025; 30(3): 29-53

    Published on Jun 30, 2025

  • 10.7857/JSGE.2025.30.3.029
  • Received on May 26, 2025
  • Revised on May 29, 2025
  • Accepted on Jun 15, 2025

Correspondence to

  • In Kyun Jung
  • 국립한밭대학교 건설환경공학과

  • E-mail: nemoik@nate.com