• Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers
  • Seo Byong-min;
  • Research Institute of Basic Sciences, Chungnam National University;
  • 불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션
  • 서병민;
  • 충남대학교 기초과학연구소;
References
  • 1. Ababou, R., Mclaughlin, D., Gelhar, L.W., and Tompson, A.F.B., 1989, Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media, Transp. Porous Media, 4, 549-565
  •  
  • 2. Attinger, S., Dentz, M., and Kinzelbach, W., 2002, Exact transversal macro dispersion coefficients for transport in heterogeneous porous media, ACTA Universitatis Carolinae-Geologica, 46(2/3), 117-119
  •  
  • 3. Bellin, A., Salandin, P., and Rinaldo, A., 1992, Simulation of dispersion in heterogeneous porous formations: statistics, first order theories, convergence of computations, Water Resour. Res., 28(9), 2211-2227
  •  
  • 4. Barry, D., Coves, A.J., and Sposito, G., 1988, On the Dagan model of solute transport in ground-water application to the Borden site. Water Resour. Res., 24(10), 1805-1817
  •  
  • 5. Burr, D.T., Sudicky, E.A., and Naff, R.L., 1994, Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: Mean displacement, plume spreading, and uncertainty, Water Resour. Res., 30(3), 791-815
  •  
  • 6. Chin, D.A. and Wang, T., 1992, An investigation of the validity of first order stochastic dispersion theories in isotropic porous media, Water Resour. Res., 28(6), 1531-1542
  •  
  • 7. Cushman, J.H., 1990, Dynamics of Fluids in Hierarchical Porous Media, Academic. San Diego, Calif
  •  
  • 8. Cushman, J.H., Hu, B.X., and Ginn, T.R., 1994, Nonequilibrium statistical mechanics of preasymptotic dispersion, J. Stat. Phys., 75, 859-878
  •  
  • 9. Cvetkovic, V., Cheng, H., and Wen, X.H., 1996, Analysis of non-linear effects on tracer migration in heterogeneous aquifers using Lagrangian travel time statistics, Water Resour. Res., 32(6), 1671-1680
  •  
  • 10. Dagan, G., 1984, Solute transport in heterogeneous porous formations, J. Fluid Mech., 145, 151-177
  •  
  • 11. Dagan, G., 1987, Theory of solute transport by groundwater. Ann. Rev., Fluid Mech., 19, 183-215
  •  
  • 12. Dagan, G., 1988, Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers, Water Resour. Res., 24(9), 1491-1500
  •  
  • 13. Dagan, G., 1989, Flow and Transport in Porous Formations, Springer-Verlag, Berlin Heidelberg, Germany
  •  
  • 14. Dagan, G., 1990, Transport in heterogeneous porous formations: Spatial moments, ergodicity, and effective dispersion, Water Resour. Res., 26(6), 1281-1290
  •  
  • 15. Dagan, G., 1991, Dispersion of a passive solute in non-ergodic transport by steady velocity fields in heterogeneous formations, J. Fluid Mech., 233, 197-210
  •  
  • 16. Dagan, G., 1994, An exact non-linear correction to transverse macrodispersivity for transport in heterogeneous formations, Water Resour. Res., 30(10), 2699-2705
  •  
  • 17. Dagan, G., 1995, Comment on 'Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: Mean displacement, plume spreading, and uncertainty' by T.D. Burr, E.A. Sudicky, and R.L. Naff., Water Resour. Res., 31(5), 1439-1441
  •  
  • 18. Dentz, M., Kinzelbach, H., Attinger, S., and Kinzelbach, W., 2000a, Temporal behavior of a solute cloud in a heterogeneous porous medium, 1. Point-like injection, Water Resour. Res., 36, 3591-3604
  •  
  • 19. Dentz, M., Kinzelbach, H., Attinger, S., and Kinzelbach, W., 2000b, Temporal behavior of a solute cloud in a heterogeneous porous medium, 2. Spatially extended injection, Water Resour. Res., 36, 3605-3614
  •  
  • 20. Dentz, M., Kinzelbach, H., Attinger, S., and Kinzelbach, W., 2002, Temporal behavior of a solute cloud in a heterogeneous porous medium, 3. Numerical simulations, Water Resour. Res., 38, 23-1-13
  •  
  • 21. Federico, V.D. and Zhang, Y.K., 1999, Solute transport in heterogeneous porous media with long-range correlations, Water Resour. Res., 35(10), 3185-3192
  •  
  • 22. Garabedian, S.P., Leblanc, D.R., Gelhar, L.W., and Celia, M.A., 1991, Large-scale natural gradient tracer test in sand and gravel, Cape Code, Massachusetts. 2. Analysis of Spatial moments for a non-reactive tracer, Water Resour. Res., 27(5), 911-924
  •  
  • 23. Gelhar, L.W. and Axness, C.L., 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res., 19(1), 161-180
  •  
  • 24. Gelhar, L.W., 1993, Stochastic Subsurface Hydrology, Prentice-Hall. Englewood Cliffs, New Jersery
  •  
  • 25. Hassan, A., Cushman, J.H., and Delleur, J.W., 1998, A Monte Carlo assessment of eulerian flow and transport perturbation models, Water Resour. Res., 34, 1143-1163
  •  
  • 26. Hassan, A., Andricevic, R., and Cvetkovic, V., 2002, Evaluation of analytical solute discharge moments using numerical modeling in absolute and relative dispersion frameworks, Water Resour. Res., 38, 1-1-8
  •  
  • 27. Hsu, K.C., Zhang, D., and Neuman, S.P., 1996, Higher-order effects on flow and transport in randomly heterogeneous porous media, Water Resour. Res., 32(3), 571-582
  •  
  • 28. Hubbard, S., Chen, J., Peterson, J., Majer, E.L., Willianms, K.H., Swift, D.J., Mailloux, B., and Rubin, Y., 2001, Hydrogeological characterization of the South Oyster vacterial transport site suing geophysical data, Water Resour. Res., 37(10), 2431-2456
  •  
  • 29. Killey, R.W.D. and Moltyaner, G.L., 1988, Twin lake tracer tests: setting methodology, and hydraulic conductivity distribution, Water Resour. Res., 24(10), 1585-1612
  •  
  • 30. Kitanidis, P.K., 1988, Prediction by the method of moments of transport in a heterogeneous formation, Jour. Hydrology, 102(14), 453-473
  •  
  • 31. Mackay, D.M., Freyberg, D.L., Roberts, P.V., and Cherry, J.A., 1986, A natural gradient experiment in a sand aquifer, 1. Approach and overview of plume movement, Water Resour. Res., 22, 2017-2030
  •  
  • 32. McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional finite-difference groundwater flow model, Techniques of Water-Resources Investigations 06-A1, USGS, 576
  •  
  • 33. Neuman, S.P., Winter, C.L., and Newman, C.M., 1987, Stochastic theory of field-scale fickian dispersion in anisotropic porous media, Water Resour. Res., 23, 453-466
  •  
  • 34. Neuman, S.P. and Zhang, Y.K., 1990, A quasi-linear theory of non-Fickian and Fickian sub-surface dispersion, 1, Theoretical analysis with application to isotropic media, Water Resour. Res., 26(5), 887-902
  •  
  • 35. Pollock, D.W., 1994, User's guide for MODPATH/MODPATHPLOT, Version 3: A particle tracking post-processing package for MODFLOW, The U.S. Geological Survey finite-difference ground-water flow model, U.S. Geological Survey, Open-File Report, 94-464
  •  
  • 36. Quinodoz, H.A.M. and Valocchi, J., 1990, Macrodispersion in heterogeneous aquifers: Numerical experiments. In: Moltyaner, G.(ed.) International conference and workshop on transport and mass exchange processes in sand and gravel aquifers: field and modeling studies, AGU, Ottawa, Ont., Canada
  •  
  • 37. Rajaram, H. and Gelhar, L.W., 1993, Plume scale-dependent dispersion in heterogeneous aquifer, 1. Lagrangian analysis in a stratified aquifer, Water Resour. Res., 29(9), 3249-3260
  •  
  • 38. Robin, M.J.L., Gutjahr, A.L., Sudicky, E.A., and Wilson, J.L., 1993, Cross-correlated random field generator with direct Fourier transform method, Water Resour. Res., 29(7), 2385-2397
  •  
  • 39. Rubin, Y. and Dagan, G., 1988, Stochastic analysis of boundaries effects on head spatial variability in heterogeneous aquifers, 1. Constant head boundary, Water Resour. Res., 24(10), 1689-1697
  •  
  • 40. Rubin, Y. and Dagan, G., 1989, Stochastic analysis of boundaries effects on head spatial variability in heterogeneous aquifers, 2. Impervious bondaries, Water Resour. Res., 25(4), 707-712
  •  
  • 41. Rubin, Y., 1990, Stochastic modeling of macrodispersion in heterogeneous porous media, Water Resour. Res., 26(1), 133-141
  •  
  • 42. Salandin, P., Rinaldo, A., and Dagan, G., 1991, A note on transport in stratified formations by flow tilted with respect to the bedding, Water Resour. Res., 27(11), 3009-3017
  •  
  • 43. Salandin, P. and Fiorotto, V., 1993, Numerical simulations of non-ergodic transport in natural formations, Proc. XXV IAHR, Tokyo, 55-62
  •  
  • 44. Selroos, J.O. and Cvetkovic, V., 1994, Mass flux statistics of kinetically sorbing solute in heterogeneous aquifer: Analytical solution and comparison with simulation, Water Resour. Res., 30(1), 63-69
  •  
  • 45. Selroos, J.O., 1995, Temporal moments for non-ergodic solute transport in heterogeneous aquifers, Water Resour. Res., 31(7), 1705-1712
  •  
  • 46. Sudicky, E.A. and Naff, R.L., 1995, Reply, Water Resour. Res., 31(5), 1443-1444
  •  
  • 47. Tompson, A.F.B. and Gelhar, L.W., 1990, Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media, Water Resour. Res., 25(10), 2541-2562
  •  
  • 48. Zhang, D. and Neuman, S.P., 1995, Eulerian-Lagrangian analysis of transport conditioned on hydraulic data, 3. Spatial moments, travel time distribution, mass flow rate, and cumulative release across a compliance surface, Water Resour. Res., 31(1), 65-75
  •  
  • 49. Zhang, Q., 1995, Transient behavior of mixing induced by a random velocity field, Water Resour. Res., 31(3), 577-591
  •  
  • 50. Zhang, Y.K. and Neuman, S.P., 1990, A quasi-linear theory of non-Fickian and Fickian sub-surface dispersion, 2. Application to anisotropic media and the Borden site, Water Resour. Res., 26(5), 903-914
  •  
  • 51. Zhang, Y.K. and Chi, J.A., 1995, An evaluation of nonlinearity in spatial second moments of ensemble mean concentration in heterogeneous porous media, Water Resour. Res. 31(12), 2991-3005
  •  
  • 52. Zhang, Y.K., Zhang, D., and Lin, J., 1996, Non-ergodic solute transport in three-dimensional heterogeneous isotropic aquifers, Water Resour. Res., 32(9), 2955-2963
  •  
  • 53. Zhang, Y.K. and Zhang, D., 1997, Time-dependent dispersion of non-ergodic plumes in two-dimensional heterogeneous porous media, J. Hydrologic Engineering, 2(2), 91-94
  •  
  • 54. Zhang, Y.K. and Federico, V.D., 1998, Solute transport in three-dimensional heterogeneous media with a Gaussian covariance of log hydraulic conductivity, Water Resour. Res., 34(8), 1929-1934
  •  
  • 55. Zhang, Y.K. and Lin, J., 1998, Numerical simulations of transport of non-ergodic plumes in heterogeneous aquifers, Stochastic Hydrology and Hydraulics, 12(2), 117-140
  •  
  • 56. Zhang, Y.K. and Federico, D.V., 2000, Nonergodic solute transport in heterogeneous porous media: Influence of multiscale structure, in Zhang, D., and Winter, C.L., eds., Theory, Modeling, and Field Investigation in Hydrogology: A Special Volume in Honor of Shlomo P. Neuman's 60th Birthday Boulder, Colorado, Geological Sociery of America Special Paper, 348, 61-72
  •  
  • 57. Zhang, Y.K. and Seo, B., 2004, Numerical simulations of non-ergodic solute transport in three-dimensional heterogeneous porous media. Stochastic Environmental Research and Risk Assessment, 18: 205-215
  •  

This Article

  • 2005; 10(6): 20-31

    Published on Dec 1, 2005

Correspondence to

  • E-mail: