• Comparison of ELLAM and LEZOOMPC for Developing an Efficient Modeling Technique
  • Suk Hee-Jun;
  • Korea Water Resources Corporation, Korea Institute of Water and Environment;
  • 효율적인 수치 모델링 기법 개발을 위한 ELLAM과 LEZOOMPC의 비교분석
  • 석희준;
  • 한국수자원공사 수자원연구원;
References
  • 1. Baptista, A.M., 1987, Solution of advection-dominated transport by Eulerian-Lagrangian methods using the backward methods of characteristics, Ph.D. thesis, Dep. of Civ. Eng., Mass. Inst. of Technol., Cambridge
  •  
  • 2. Baptista, A.M., Adams, E., and Stolzenbach, K., 1984, Eulerian-Lagrangian analysis of pollutant transport in shallow water, Rep. 296, R.M. Parsons Lab. for Water Resour. and Hydrodyn., Mass. Inst. of Technol., Cambridge
  •  
  • 3. Binning, P.J. and Celia, M.A., 1996, A finite volume Eulerian-Lagrangian localized adjoint method for solution of contaminant transport equations in two-dimensional multi phase flow systems, Water Resour. Res., 32, 103-114
  •  
  • 4. Celia, M.A., 1994, Eulerian-Lagrangian localized adjoint methods for contaminant transport simulations, In Computational Methods in Water Resources X, ed. Alexander Peters et al. Kluwer Academic Press, London, 207-216
  •  
  • 5. Celia, M.A., Russell, T.F., Herrera, I., and Ewing, R.E., 1990, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Resour., 13, 187-206
  •  
  • 6. Cheng, J.R., Cheng, H.P., and Yeh, G.T., 1996, A Lagrangian-Eulerian method with adaptively local zooming and peak/valley capturing approach to solve two-dimensional advection-diffusion transport equations, International J. Numerical Methods in Engineering, 39, 987-1016
  •  
  • 7. Douglas, J. and Russell, T.F., 1982, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19,871-885
  •  
  • 8. Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, The U.S. Geological Survey modular ground water model-User guide to modularization concepts and the ground water flow process, Open-File Report 00-92, US Geological Survey
  •  
  • 9. Healy, R.W. and Russell, T.F., 1993, A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation, Water Resow: Res., 29, 2399-2413
  •  
  • 10. Healy, R. W. and Russell, T.F., 1998, Solution of the advectiondispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method, Adv. Water Resour., 21(1), 11-26
  •  
  • 11. Herrera, I., Ewing, R.E., Celia, M.A., and Russell, T.F., 1993, Eulerian-Lagrangian localized adjoint methods: the theoretical framework, Numer. Meth. PDEs, 9, 431-458
  •  
  • 12. Konikow, L.F. and Bredehoeft, J.D., 1978, Computer model of two-dimensional solute transport and dispersion in groundwater, Techniques of Water-Resources Investigation of the United Sates Geological Survey, chapter C2, book 7, USGS, Reston, Va
  •  
  • 13. Leonard, B.P., 1988, Universal limiter for transient interpolation modeling of advective transport equations: The ULTIMATE conservative difference scheme, NASA Tech. Memo. 100916
  •  
  • 14. Leonard, B.P. and Mokhtari, S., 1990, Beyond first-order unwinding: The ULTRA-SHARP alternative for non-oscillatory steady-state simulation of convection, lnt. J. Numer. Methods Eng., 30, 729-866
  •  
  • 15. Russell, T.F., 1990, Eulerian-Lagrangian localized adjoint methods for advection-dominated problems. In Numerical Analysis, 1989, Pitman Res. Notes Math, Series, Vol. 228, ed. D.F. Griffiths & G.A. Watson. Longman Scientific and Technical, Harlow, U.K., 206-228
  •  
  • 16. Williamson, D.L., and Rasch, P.J., 1988, Two-dimensional semi-Lagrangian transport with shape preserving interpolation, Mon. Weather Rev., 117, 102-109
  •  
  • 17. Yeh, G.T., 1990, A Lagrangian-Eulerian method with zoomable hidden fine-mesh approach to solving advection-dispersion equations, Water Resour. Res., 26(6), 1133-1144
  •  
  • 18. Yeh, G.T., Chang, J.R., and Short, T.E., 1992, An exact peak capturing and oscillation-free scheme to solve advection-dispersion transport equations, Water Resour. Res., 28(11), 2937-2951
  •  

This Article

  • 2006; 11(1): 37-44

    Published on Feb 1, 2006

Correspondence to

  • E-mail: