• Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment
  • HwangBo, Hyun-Wook;Shin, Won-Sik;Kim, Young-Hun;Song, Dong-Ik;
  • Department of Chemical Engineering, Kyungpook National University;Department of Environmental Engineering, Kyungpook National University;Department of Environmental Engineering, Andong National University;Department of Chemical Engineering, Kyungpook National University;
  • 생물벽체를 이용한 지하수내 PCE의 환원성 탈염소화시 전자공여체의 영향: 회분식 실험
  • 황보현욱;신원식;김영훈;송동익;
  • 경북대학교 화학공학과;경북대학교 환경공학과;안동대학교 환경공학과;경북대학교 화학공학과;
References
  • 1. Ballapragada, B.S., Stensel, H.D., Puhakka, J.A., and Ferguson, J.F., 1997, Effect of hydrogen on reductive dechlorination of chlorinated ethenes, Environ. Sci. Technol., 31(6), 1728-1734
  •  
  • 2. Binger, C.A., Martin, J.P., Allen-King, R.M., Fowler, M., 1999, Variability of chlorinated-solvent sorption associated with oxidative weathering of kerogen J. Contam. Hydrol., 40, 137-158
  •  
  • 3. Brusseau, M.L. and Rao, P.S.C., 1991, Influence of sorbate structure on nonequilibrium sorption of organic compounds, Environ Sci Technol., 25, 1501-1506
  •  
  • 4. Brusseau, M.L., 1991, Cooperative sorption of organic chemicals in systems composed of organic carbon aquifer materials, Environ Sci Technol., 25, 1747-1752
  •  
  • 5. Burris, D.R., Delcomyn, C.A., Smith, M.H., and Roberts, A.L., 1996, Reductive dechlorination of tetrachloroethene and trichloroethylene catalyzed by vitamin $B_{12}$ in homogenous and heterogenous systems, Environ. Sci. Technol., 30(10), 3047-3052
  •  
  • 6. Carr, C.S. and Hughes, J.B., 1998, Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity, Environ. Sci. Technol., 32, 1817-1824
  •  
  • 7. Cornellison, G., Hassell, K.A., van Noorst, P.C.M., Kraaij, R., van Erkeren, P.J., Dijkema, C., de Jager, P.A., and Govers, H.A.J., 1997a, Slow desorption of PCBs and chlorobenzenes from soils and sediments: Relations with sorbent and sorbate characteristics, Environ. Pollut., 108, 69-80
  •  
  • 8. Cornellison, G., Rigterink, H., Vrind, B.A., ten Hulscher, D.Th.E.M., Ferdinary, M.M.A., and van Noorst, P.C.M., 1997b, Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminant sediment, Chemosphere, 35(10), 2405-2416
  •  
  • 9. Fennell, D.E. and Gossett, S.H., 1997, Comparison of butyric acid, ethnol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environ. Sci. Technol., 31(3), 918-926
  •  
  • 10. Grathwohl, P., 1990, Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on $K_{OC}$ correlations, Environ. Sci. Technol., 24(11), 1687-1693
  •  
  • 11. Guerin, W.F. and Boyd, S.A., 1992, Differential bioavailability of soil-sorbed naphthalene to two bacterial species, Appl. Environ. Microbiol., 58, 1142-1152
  •  
  • 12. Ho, Y. and McKay, G., 2000, The kinetics of sorption of divalent metal ions onto sphagnum peat moss, Water Res., 34(3), 735-742
  •  
  • 13. House, J.S., 2002, Enhanced bioremediation of 1,1,2,2-tetrachloroethane in wetland soils, M.S. Thesis, Louisiana State University, Baton Rouge, LA, USA
  •  
  • 14. Hungate, R.E., 1969, A roll tube method for cultivation of strict anaerobes, In: Methods in Microbiology, Vol. 3b, Norris, J.R. and Robbins, D.W.(ed.), Academic Press, New York
  •  
  • 15. Isalou, M., Sleep, B.E., and Liss, S.N., 1998, Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system, Environ. Sci. Technol., 32(22), 3579-3585
  •  
  • 16. Kao, C.M. and Lei, S.E., 2000, Using a peat biobarrier to remediate PCE/TCE contaminated aquifers, Water. Res., 34(3), 835- 845
  •  
  • 17. Kao, C.M., Chen, S.C., and Liu, J.K., 2001, Development of biobarrier for the remediation of PCE-contaminated aquifer, Chemosphere, 43, 1071-1078
  •  
  • 18. Kassenga, G.R., Pardue, J.H., Blair, S., and Ferraro, T., 2003, Treatment of chlorinated volatile organic compounds in upflow wetland mesocosms, Ecol. Eng., 19, 305-353
  •  
  • 19. Kassenga, G.R., Pardue, J.H., Moe, W.M., and Bowman, K.S., 2004, Hydrogen thresholds as indicators of dehalorespiration in constructed treatment wetlands, Environ Sci. Technol. 38, 1024- 1030
  •  
  • 20. Kim, Y-H. and Carraway, E.R., 2003, Dechlorination of chlorinated ethenes and acetylenes by palladized iron, Environ. Technol., 24, 809-819
  •  
  • 21. Lendvay, J.M., Loffler, F.E., Dollhopf, M., Aiello, M.R., Daniels, G., Fathepure, B.Z., Gebhard, M., Heine, R., Helton, R., Shi, J., Krajmalnik-Brown, R., Major, C.L., Barcelona, M.J., Petrovskis, E., Hickey, R., Tiedje, J.M., and Adriaens, P., 2003, Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation, Environ. Sci. Technol., 37, 1422-1431
  •  
  • 22. Li, J. and Werth, C.J., 2001, Evaluating competitive sorption mechanim of volatile organic compounds in soils and sediments using polymers and zeolites, Environ. Sci. Technol., 35, 569-574
  •  
  • 23. Li, J. and Werth, C.J., 2004, Slow desorption mechanism of volatile organic chemical mixtures in soil and sediment micropores, Environ. Sci. Technol., 38, 440-448
  •  
  • 24. Lorah, M.M. and Olsen, L.D., 1999, Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence, Environ. Sci. Technol., 33, 227-234
  •  
  • 25. Lorah, M.M. and Voytek, M.A., 2004, Degradation of 1,1,2,2- tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater, J. Contam. Hydrol., 70, 117-145
  •  
  • 26. Lorah, M.M., Olsen, L.D., Capone, D.G., and Baker, J.E., 2001, Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments, Bioremediation J., 5, 101-118
  •  
  • 27. Nzengung, V.A., Nkedi-Kizza, P., Jessup, R.E., and Voudrias, E.A., 1997, Organic cosolvent effects on sorption kinetics of hydrophobic organic chemicals by organoclays, Environ. Sci. Technol., 31, 1470-1475
  •  
  • 28. Opdyke, D.R. and Loehr, R.C., 1999, Determination of chemical release rates from soil: Experimental design, Environ. Sci. Technol., 33, 1193-1199
  •  
  • 29. Pardue, J.H., Kassenga, G.R., and Shin, W.S., 2000, Design approaches for chlorinated VOC treatment wetlands, In: Means, J.L. and Hinchee, R.E. (eds.). Wetlands and Remediation, An International Conference, Battelle Press, p. 301-308
  •  
  • 30. Schaefer, C.E. Schuth, C., Werth, C.J., and Reinhard, M., 2000, Binary desorption isotherm of TCE and PCE from silica gel and natural solids, Environ. Sci. Technol., 34, 4341-4347
  •  
  • 31. Schollhorn, A., Savary, C., Stucki, G., and Hanselmann, K.W., 1997, Comparison of different substrates for the fast reductive dechlorination of trichloroethene under groundwater conditions, Water. Res., 31, 1275-1282
  •  
  • 32. Shawabkeh, R.A. and Tutunji, M.F., 2003, Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 24(1-2), 111-120
  •  
  • 33. Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1996, Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture, Environ. Sci. Technol., 30, 2850-2858
  •  
  • 34. Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1997, Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethylene, Environ. Sci. Technol., 31, 918-926
  •  
  • 35. Stuer-Lauridsen, F. and Pederson, F., 1997, On the influence of the polarity index of organic matter in predicting environmental sorption of chemicals, Chemosphere, 35(4), 761-773
  •  
  • 36. Taylor, R.T., Hanna, M.L., Shah, N.N., Shonnard, D.R., Duba, A.G., Durham, W.B., Jackson, K.J., Knapp, R.B., Wijesinghe, A.M., Knezovich, J.P., and Jovanovich, M.C., 1993, In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotropic microbial filter, Hydrological Sci. J., 38, 323-342
  •  
  • 37. Warith, M.L., Fernandes, L., and Gaudet, N., 1999, Design of in-situ microbial filter for the remdediation of naphthalene, Waste Manage., 19, 9-25
  •  
  • 38. Wood, S., Trobaugh, D.J., and Carter, K.J., 1999, Polychlorinated biphenyl reductive dechlorination by vitamin $B_{12}s$: Thermodynamics and regiospecificity, Environ. Sci. Technol., 33, 857-863
  •  
  • 39. Xing, B., McGill, W.B., and Dudas, M.J., 1994, Cross correlation of polarity curves to predict partition coefficients of nonionic contaminants, Environ. Sci. Technol., 28, 1929-1933
  •  
  • 40. Yang, Y. and McCarty, P.L., 1998, Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture, Environ. Sci. Technol., 32, 3591-3597
  •  
  • 41. Yerushalmi, L., Manuel, M.F., and Guiot, S.R., 1999, Biodegradation of gasoline and BTEX in a microaerophilic biobarrier, Biodegradation, 10, 341-352
  •  
  • 42. Zou, S., Stensel, H.D., and Ferguson, J.F., 2000, Carbon tetrachloride degradation: effect of microbial growth substrate and vitamin $B_{12}$ content, Environ. Sci. Technol., 34, 1751-1757
  •  

This Article

  • 2006; 11(2): 22-37

    Published on Apr 1, 2006

Correspondence to

  • E-mail: