• The Phenomenological Comparison between Results from Single-hole and Cross-hole Hydraulic Test
  • Kim, Tae-Hee;Kim, Kue-Young;Oh, Jun-Ho;Hwang, Se-Ho;
  • Korea Institute of Geoscience and Mineral Resources;Korea Institute of Geoscience and Mineral Resources;Korea Institute of Geoscience and Mineral Resources;Korea Institute of Geoscience and Mineral Resources;
  • 균열암반 매질 내 단공 및 공간 간섭 시험에 대한 현상적 비교
  • 김태희;김구영;오준호;황세호;
  • 한국지질자원연구원;한국지질자원연구원;한국지질자원연구원;한국지질자원연구원;
References
  • 1. 박경우, 배대석, 2005, 텔레뷰어에서 관찰되는 단열특성과 수리 전도도의 상관관계 분석, 지질학회지, 41(2), 269-285
  •  
  • 2. 한국지질자원연구원, 2003, 균열암반의 수리지질학적 특성 연구, KR-2003-(최종)-09-2003-R
  •  
  • 3. 한국지질자원연구원, 2004, 지하수시스템 통합해석기술개발 (I), KR-2004-(연차)-07-2004-R
  •  
  • 4. 함세영, 김문수, 이병대, 류상민, 옥수석, 2001, 부산지역 화강암의 단열빈도와 수리적 특성의 상관성, 지질공학, 11(3), 279-294
  •  
  • 5. Ando, K., Kostner, A., and Neuman, S.P., .2003, Stochastic continuum modeling of flow and transport in a crystalline rock mass: Fanay-Augres, France, revisited, Hydrogeology Journal 11(5), 521-535
  •  
  • 6. Bear, J., Tsang, C.F., and de Marsily, G., 1993, Flow and contaminant transport in fractured rock., San Diego: Academic Press, Inc.
  •  
  • 7. Berkowitz, B., Bour, O., Davy, P., and Odling, N., 2000, Scaling of fracture connectivity in geological formations., Geophysical Research Letter, 27(14), 2061-2064
  •  
  • 8. Bour, O., P. Davy, C. Darcel, and N. Odling, 2002, A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway), Journal of Geophysical Research, 107(B6), 2113, doi:10.1029/2001JB000176
  •  
  • 9. Cacas, M.C., Ledoux, E., de Marsily, G., Barbreau, A., Calmels, P., Gaillard, B., and Margritta, R., 1990a, Modelling fracture flow with a stochastic discrete fracture network: calibration and validation. 1. The flow model., Water Resources Research, 26(3), 479-489
  •  
  • 10. Cacas, M.C., Ledoux, E., de Marsily, G., Barbreau, A., Calmels, P., Gaillard, B., Margritta, R., 1990b, Modelling fracture flow with a stochastic discrete fracture network: calibration and validation. 2. The transport model., Water Resources Research, 26(3), 491-500
  •  
  • 11. de Marsily, G.h., Delay, F., Gonalves, J., Renard, P.h., Teles, V., and Violette, S., 2005, Dealing with spatial heterogeneity, Hydrogeology Journal, 13, 161-183
  •  
  • 12. IAEA, 1994, Siting Geological Disposal Facilities
  •  
  • 13. National Research Council, 1996, Rock fractures and fluid flow: contemporary understanding and applications. Washington, DC: National Academy Press
  •  
  • 14. Neumann, S.P., 2005, Trend, prospects and challenges in quantifying flow and transport through fractured rocks, Hydrogeology Journal, 13, 124-147
  •  
  • 15. Paillet, F.L., 1998, Flow modeling permeability estimation using borehole flow logs in heterogeneous fractured formations, Water Resources Research, 34(5), 997-1010
  •  
  • 16. Renshaw, C.E., 1996, Influence of subcritical fracture growth on the connectivity of fracture networks., Water Resources Research, 32, 1519-1530
  •  
  • 17. Wellman, T.P., and Poeter, E.P., 2005, Estimating spatially variable representative elementary scales in fractured architecture using hydraulic head observations, Water Resources Research, 41, W03001, doi:10.1029/ 2004WR003287
  •  
  • 18. William, J.H. and Paillet, F.L., 2002, Using flowmeter pulse tests to define hydraulic connections in the subsurface: a fractured shale example, Journal of Hydrology, 265, 100-117
  •  

This Article

  • 2007; 12(5): 39-53

    Published on Oct 31, 2007

Correspondence to

  • E-mail: